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Abstract 

This dissertation explores the problem of radio network scheduling using graph 

models. It is well known that network scheduling problems map into the set of 

graph coloring problems. These problems are known to be NP-complete for arbitrary 

graphs, but can be optimally solved for some restricted classes of graphs. 

The graph models previously used for radio networks are shown to be inaccu- 

rate in their representation of the problem domain characteristics that affect network 

scheduling. Therefore, a new restricted class of graphs, called Point Graphs, is de- 

fined that accurately models radio networks. This model suggests new approaches to 

solving the scheduling problem. 

The graph coloring problems are then analyzed with respect to the problem do- 

main. Two types of network schedule are common, broadcast and link schedules. 

These scheduling problems are solved using distance-2 vertex coloring and a variant 

of edge coloring called prn-scheduling. Traditional vertex coloring is defined only for 

undirected graphs. However, for network scheduling the arc direction is important. 

Therefore, a new problem, directed distance-2 vertex coloring, is defined, and shown 

to produce schedules which are superior to those produced using undirected coloring. 

Within the context of broadcast scheduling it is proven that, despite being a 

restricted class of graph, both the traditional coloring and the new directed coloring 

problems are NP-complete for point graphs. An exception is a subset of point graphs 

called linear point graphs that can be colored in polynomial time. These complexity 

results provide the impetus for developing new approximation algorithms for graph 

coloring using features unique to point graphs. The performance of these algorithms 

is compared to the performance of existing algorithms. 

An analysis of prn-coloring for point graphs reveals that this problem is also NP- 

complete. New approximation algorithms for prn-coloring are developed and their 

performance is compared to the performance of existing algorithms. 

The use of the broadcast scheduling algorithms for distributed applications is then 

investigated and a new distributed algorithm is proposed for scheduling in networks 

composed of mobile transceivers. 

m 
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Chapter 1 

Introduction 

As we approach the twenty-first century it is said that man is entering the "infor- 

mation age." At the dawning of this new age, huge amounts of information are being 

generated and transmitted between individuals, organizations, and governments. The 

advent of computers and electronic communications has accelerated both the gener- 

ation and dissemination of information within computer networks. 

These networks are composed of computers which communicate using a shared 

physical medium. Most current networks use a hard wire connection which requires 

constant physical contact between the computer and the medium. These networks use 

different protocols such as ethernet or broadband transmissions to send information 

between computers (and other users) on the network. The rapid growth in computer 

and communications technology has led to an explosion in the demand for network 

connections and network services. In addition, the growth of mobile communication 

systems (cellular phones in particular) has resulted in a mobile work force and the 

demand for mobile network connections. 

Mobile network connections (which will hereafter be referred to as mobile net- 

works) rely on the use of wireless communications. Communication is usually achieved 

using radio transmissions as the shared medium within the network. In order to facil- 

itate the high volume of information to be communicated within these networks, the 

radio transmissions must efficiently utilize the medium. Efficient utilization is depen- 

dent upon access to the shared medium.  This can best be accomplished by under- 
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standing the problem and arriving at a solution based on the problem. The problem 

of shared access results in the need for scheduling access to the shared communica- 

tion medium to ensure communication needs are met. This dissertation addresses 

the problem of understanding the scheduling access by investigating the process of 

modeling the problem domain and the efficiency of arriving at solutions using the 

models developed. 

The rest of this chapter introduces some of the concepts and concerns involved in 

radio communication. Section 1.1 discusses radio network applications and develop- 

ment. Section 1.2 addresses some of the specific concerns applicable to the problem 

of accessing a shared communication medium. Section 1.3 gives a brief description 

of the reasons for and the approach to the work presented in this dissertation. Sec- 

tion 1.4 gives a brief description of the problem and the objectives of this dissertation. 

Finally, section 1.5 outlines the remainder of this dissertation. 

1.1    Radio Communications 

Radio communications occur by encoding a message on a signal within the electro- 

magnetic spectrum. What distinguishes one radio signal from another is the method 

used to encode the message and the nature of the signal. Common encoding tech- 

niques are the amplitude modulation (AM) and frequency modulation (FM) common 

to broadcast radio around the world. The other feature separating these two forms of 

communication in the United States is the nature of the signal. For these two cases, 

the frequency of the carrier signal is used to separate the "AM band" from the "FM 

band". 

Message encoding depends in part on the type of signal being encoded. For 

example, while the acoustic waveform is used to modulate the carrier signal in AM 

radio, the encoding of television signals is more complex due in part to the additional 

information being encoded. In fact, the type of information being sent as a message 

is not entirely independent of the signal used. 

The signal frequencies used for radio communications range from approximately 

10 kilohertz to 1 terahertz (near infrared). The difference between frequencies affects 



3 

the amount of information they can carry in a given amount of time. Most commercial 

communications, including broadcast radio, television, aircraft, police, and maritime 

voice communications lie in the 0.5-300 MHz range. However, there is a great deal 

of growth in the usage of the frequencies beyond 300 MHz for applications such 

as satellite communication and land base microwave relay technology. As a rule of 

thumb, the more information per unit time, the higher the frequency needed to carry 

the information. 

Radio transmissions are also prone to several limitations which affect the design 

of radio networks. Of particular concern are noise, interference from other signals, 

geographic interference, and jamming. These problems affect the performance and 

connectivity of networks. Two additional factors which influence the connectivity of a 

radio network are that signal strength diminishes proportionally to the square of the 

distance between the transmitter and the receiver and that many of the frequencies 

used for communications require a "line of sight" between the transmitter and the 

receiver. For more information on the characteristics of radio communications the 

reader is referred to any one of the quality texts on electromagnetics, communications, 

or networks [7, 14, 42]. 

Other applications of radio communications include situations where users are mo- 

bile, are in inaccessible areas, or when networks must be constructed quickly [47]. The 

spatial distribution of transceivers results in what is called a multi-hop network (i.e., 

communication between transceivers may require transceivers located between the 

source and destination of a message to receive and rebroadcast the communication). 

This distribution permits sharing or reuse of the frequencies. Current techniques for 

this sharing include Time Division [20, 47, 51], Frequency Division [30], and Code 

Division [34] multiple access schemes (referred to as TDMA, FDMA, and CDMA 

respectively). 

1.2    The Need for Scheduling 

The nature of radio broadcasts causes the problem of interference to be a concern 

within the radio network.   The interference problem is what leads to the necessity 



of developing schedules for radio networks. Early in the development of radio it was 

discovered that transmitters assigned to the same or closely related frequencies, had 

the potential to interfere with each other. The first solution used was to combine 

the bandwidth of the transmitters and the band of the electromagnetic spectrum 

used to assign non-interfering frequencies to the transmitters. This is an early form 

of FDMA, and as long as the usable portion of the electromagnetic spectrum grew, 

unique frequencies could be assigned. Unfortunately, the proliferation of transmitters 

made this simple method of frequency assignment untenable. As spectrum usage, and 

transceiver sophistication grew, it became both desirable and necessary to provide an 

additional mechanism to prevent interference. 

Regardless of the access mechanism used (TDMA, FDMA, or CDMA) the same 

basic problems persist. A schedule must be developed to allow all transceivers to 

function, and to prevent interference. The resulting schedule assigns a position, based 

on time, frequency, or code, to each transceiver. Each schedule position corresponds 

to an assigned time, frequency, or code in TDMA, FDMA, or CDMA respectively. 

1.2.1    Interference Patterns 

The type of schedule planned for a network affects the definition of interference. 

Two types of schedule are commonly used. A broadcast schedule determines a single 

schedule position for each transceiver. When a transceiver transmits a message, all 

transceivers within its range receive the message. In link schedules, transceivers are 

scheduled by message transmitter-receiver pairs, which is why it is often called point- 

to-point communication. 

The type of schedule used depends on the inter-transceiver communications al- 

lowed in the network and, in the case of CDMA, on the code assignment scheme used. 

The capabilities of the transceivers determine (or are determined by) the access mech- 

anism used. Typically, transceivers are assumed to be either transmitting or receiving 

at all points in the schedule (i.e., no transceiver does both simultaneously). 

Two types of interference are of interest in developing network schedules. The 

first type is called primary interference.  In broadcast scheduling, this occurs when 



two transmitters are within range of each other. 

Figure 1.1: Primary Interference in Broadcast Scheduling 

As shown in figure 1.1, transceivers a and b, with transmission radii ra and r6, 

are within each others' transmission range. We would not want them to attempt to 

transmit during the same time, using the same frequency or code, and would therefore 

schedule them to transmit in different positions in our schedule. 

The second type of interference is secondary interference. Two transceivers should 

not transmit at the same position in the schedule if there is a third transceiver which 

is within the range of both transmitting transceivers. 

Figure 1.2: Secondary Interference in Broadcast Scheduling 

Figure 1.2 shows that since transceiver c can receive transmissions from both a 

and b, a and b should not occupy the same schedule position. 

When developing a link schedule interference occurs under slightly different condi- 

tions. Primary interference occurs when a transceiver is involved in the transmission 

(either as transmitter or receiver) for more than one message. Since transmissions are 

scheduled on a pairwise basis, this can correspond to a violation of either of the in- 

terference conditions from broadcast scheduling. Figure 1.3 shows the ways in which 

this can occur. 



(a) (b) (c) 

Figure 1.3: Primary Interference in Link Scheduling 

For figure 1.3(a) the interference occurs because transceiver a,c cannot transmit 

two messages simultaneously. Likewise, for figure 1.3(b) transceiver a,d cannot both 

transmit and receive at the same time. This interference is equivalent to primary 

interference in broadcast scheduling. Finally, in figure 1.3(c), transceiver b,d cannot 

receive two messages at once, a condition equivalent to secondary broadcast interfer- 

ence. 

Secondary interference in link scheduling differs from interference in broadcast 

scheduling in that there are unintended receivers for a given message (in broadcast 

scheduling it can be argued that all transceivers within range are intended to receive 

a transmission). This is demonstrated in figure 1.4. Due to the nature of electromag- 

netic transmission, most transceivers are omnidirectional, and though a transceiver 

may not be intended as the recipient, if it is within range and is not also transmitting, 

it will receive the message. 

(a) (b) (c) 

Figure 1.4: Secondary Interference in Link Scheduling 

CDMA, due to differences in its transceiver model, treats this interference dif- 



ferently depending on the code assignment scheme used. Scheduling for a pairwise 

code assignment scheme is equivalent to the more traditional edge coloring problem, 

and therefore does not consider the secondary interference shown in figure 1.4 as a 

scheduling restriction [34]. This type of interference can be important for TDMA 

and FDMA networks and becomes an issue when hybrid code assignment schemes 

are used in CDMA. 

One important note about the restrictions here, there is no restriction on simulta- 

neous transmissions from two adjacent transceivers, as long as there are no common 

recipients for the transmissions (recall that the typical transceiver model prevents a 

transceiver from simultaneously transmitting and receiving). Thus, figure 1.4 could 

just as easily be drawn as in figure 1.5. While interference occurs in this figure, it 

is not due to the fact that transceivers a and c are within each other's range. If 

transceivers b and d were not within the common transmission area (the area where 

the circles overlap) then no interference would occur. 

(a) (b) (c) 

Figure 1.5: Secondary Interference in Link Scheduling, Redrawn 

1.2.2    Effect of Interference on Scheduling 

Interference between transceivers is the driving force behind network scheduling. 

Two approaches are commonly used in scheduling networks. Random access schedul- 

ing produces no set schedule per se, instead a transceiver transmits a message as 

soon as possible. If a collision occurs, the transmission is repeated until the message 

is successfully received. This method would be attractive in networks with infrequent 



communication because interference would be unlikely. Random access is the most 

common method for hard wire networks. For those networks, collisions can easily be 

detected since all the transceivers can communicate with each other. In addition, if 

a transceiver does not need to send a message it doesn't prevent other transceivers 

from transmitting in its schedule position. These advantages permit efficient use of 

the network medium by reducing the overhead involved in scheduling. As long as col- 

lisions between messages are rare, the overhead of collision detection will be less than 

the overhead of maintaining schedule positions which are infrequently used. Random 

access scheduling is common in networks which have bursts of communication rather 

than a constant amount of message traffic. 

The alternative to random access "scheduling" is fixed access. The advantages 

of random access scheduling tend to be lost when using broadcast media. Much 

of the efficiency is lost due to difficulties in detecting collisions (the hidden terminal 

problem [48, 56]). On the other hand, a fixed schedule assigns a portion of the schedule 

to each transceiver. In broadcast networks, the spatial separation of transceivers 

permits the same position in the schedule to be assigned to multiple transceivers while 

avoiding collisions. Therefore, fixed schedules are common in broadcast networks. (In 

addition, in heavily loaded networks, communication is often improved when collision 

detection is not required.) 

1.3    Impetus and Approach 

Radio network scheduling has been shown to be one of the intrinsically hard 

problems in terms of the complexity of arriving at a schedule of minimum length. A 

nearly equivalent graph theory problem has been the main area of focus for research 

in generating approximate solutions in a reasonable amount of time. The research has 

been somewhat misdirected in that both the graphical models used and the specific 

graph theory problem do not accurately represent the radio networks being scheduled. 

This work proposes a more accurate graphical model, and defines a graph theory 

problem which captures the pertinent details lost in the traditional graph theory 

problem. 



To present these arguments, the failings of the more popular models and the graph 

theory problem will first be presented. After defining the new graphical model and 

the graph theory problems used to solve scheduling, the complexity of solving both 

the traditional and new graph theory problem are examined, and new algorithms are 

developed which attempt to exploit the characteristics of the radio networks which 

were not captured previously. 

1.4    The Problem and Objectives 

Previous research addressed the wrong problem by using network models which 

don't reflect the possible interconnections between the transceivers in the network. 

The results using their models are related to the problem of scheduling radio networks, 

but due to their inaccuracy, the conclusions drawn are not directly applicable to the 

scheduling problem. A new model is needed which can accurately represent the 

problem domain of scheduling radio networks. 

The main objective of this work is to define and investigate an accurate model of 

radio networks. Specific objectives can be defined as follows: 

• Develop an accurate model of radio networks which can be used to solve the 

broadcast scheduling problem. 

• Prove the complexity of solving the broadcast scheduling problem using the new 

model. 

• Develop new algorithms to explore the characteristics unique to the new model, 

for possible exploitation in developing broadcast schedules. 

• Show the correctness and complexity of the new algorithms. 

• Empirically compare the performance of the new algorithms to the performance 

of algorithms which do not use the unique characteristics of the new model. 

• Develop a distributed broadcast scheduling algorithm for possible use in net- 

works composed of mobile transceivers. 



10 

1.5     Overview of Dissertation 

Chapter 2 describes previous work in the area of scheduling radio networks. Af- 

ter a discussion of the ideas behind modeling network problems, the correspondence 

between network scheduling and graph coloring are explored. Typical graphical net- 

work models are evaluated with regard to their fidelity in representing the problem 

domain. In addition, the graph theoretic problems used to solve network scheduling 

using these models are discussed. Deficiencies in the models and traditional methods 

of solution are identified. 

Chapter 3 defines a new graph model for radio networks to address the deficiencies 

identified in the previous chapter. The relationship of this model is shown with 

respect to the previous graphs used for this problem. The importance of redefining 

the methods of solution with respect to the problem domain is documented in terms 

of the efficiency of the solutions produced. For this reason, a new definition of the 

graph coloring problem is presented in this chapter. 

Chapter 4 explores the process of solving the radio network broadcast scheduling 

problem. The traditional and new graph vertex coloring problems are investigated 

with respect to the complexity of solution. Due to the NP-completeness of optimal 

solutions, new approximation algorithms are developed which incorporate the addi- 

tional information included in this model. The performance of these algorithms is 

analyzed with respect to their running time and performance relative to optimal so- 

lutions to the problem. Empirical performance of these new algorithms is compared 

to versions of traditional algorithms which are modified to address the newly defined 

problem. 

Chapter 5 discusses the complexity of link scheduling by solving the prn-coloring 

problem for the new graph models. Approximation algorithms are defined which 

use the additional information available in the new graph model. The performance 

of these algorithms is compared to that of existing algorithms for determining link 

schedules. 

Chapter 6 addresses distributed scheduling in radio networks. Transceiver capa- 

bilities within the network are analyzed in terms of their importance in distributed 
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scheduling.   An algorithm for scheduling in a distributed environment is presented 

along with a set of assumptions about the transceiver capabilities. 

Chapter 7 summarizes the work presented in this dissertation. The major contri- 

butions of this dissertation are presented. New directions for research indicated by 

the results of this work are suggested. 



Chapter 2 

Background 

This chapter begins with a discussion of the reasons for modeling networks in 

developing solutions to the problem of scheduling shared access to the common trans- 

mission medium. The correspondence to graph theoretic problems is then explained 

and the types of graphs used in developing solutions to the problem are examined. 

Next, the complexity of solving the graph problems is explored. The chapter con- 

cludes with a discussion of the limitations of the graphical models used and the graph 

theory problems solved in developing network schedules. 

2.1    Reasons for Network Modeling 

Models are designed to encapsulate the essential features of the system under 

study. Computer models must be constructed in terms of computable functions and, 

as such, require the adoption of a particular view or paradigm of the system. The 

resulting model represents the view of the "real world" or at least those aspects of 

interest in the problem under investigation. The main goal in developing a model is 

to derive a simple, easily manipulated representation which can be used to solve the 

problem. The keys are to capture the important aspects of the problem and to end 

up with a form of the problem which lends itself to solution. 

The most important criteria in any network schedule is to have an interference 

free schedule.   This means the network model used must be able to represent the 
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transceivers to be scheduled and the various types of interference which may be 

present between them. With any transceiver there are certain features which are 

only of secondary importance in scheduling. (For example, while antenna height will 

affect the range of the transceiver, the range is determined by a combination of char- 

acteristics, of which antenna height is only one. Therefore, while range becomes a 

major consideration in determining if interference will occur between transceivers, 

antenna height is only of secondary interest.) For the sake of simplification, such 

secondary features are subsumed under larger aspects of the problem. Of course, the 

particular problem being solved will determine what features are of secondary impor- 

tance, which ones are essential to the problem model, and which ones have absolutely 

no bearing on the model. 

The goal is to have an accurate model of the system which can be used to develop 

solutions to the problem. The quality of the model is usually measured by its fidelity 

in capturing the information of the problem domain, while excluding representations 

not possible in the problem domain. The other main concerns are the efficiency 

involved in using the model with respect to the time required to arrive at a solution, 

and the quality of the solution (the quality of solution is influenced by both the model 

being used and by the algorithms used). 

Most network models use a standard transceiver as the abstraction of all the 

transceivers in the network. Each transceiver differs from the others only in its 

position. While other transceiver models are possible, this simplifying assumption 

is nearly universal in its application to network modeling. This assumption imposes 

restrictions on the possible communication links between transceivers in the network, 

and will be relaxed as appropriate in discussing network models and algorithms for 

those models. 

2.2     Correspondence to Graph Theoretic Problems 

Graphical models are particularly attractive for network scheduling problems due 

to the similarity between scheduling and some graph theoretic problems. Network 

scheduling is usually done by solving graph coloring problems for the graphical repre- 
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sentation of the network to be scheduled. Traditionally, graph coloring is concerned 

with assigning colors to the vertices of graphs so no two adjacent vertices have the 

same color. Adjacency in these cases has been restricted to a definition based on 

undirected graphs. By this definition, two vertices are adjacent if and only if there 

is an edge between them. For vertex coloring (distance-1 coloring) this definition 

is adequate to represent the restrictions placed on a graph coloring. Based on this 

definition, two vertices cannot be assigned the same color if they are adjacent. 

For example, frequency assignment is a scheduling problem where interfering 

transmitters are assigned different frequencies. This problem is usually solved us- 

ing distance-1 vertex coloring [30]. In it, two nodes u and v, are adjacent if 3e G E, 

the set of edges, where e is an edge between u and v. Such vertices are not allowed 

to have the same color in a correct coloring. Stated formally: 

Given graph G = (V,E), a distance-1 vertex coloring, also called a 
graph coloring, is a mapping {$ : v -> J\f\<f>(vi) = 4>{v3) & (u,-,Uj) £ E] 

where V{, Vj G V . 

While this graph coloring problem corresponds to the frequency assignment prob- 

lem, most scheduling problems correspond to different graph theoretic problems. 

Broadcast scheduling in a multi-hop radio network can not be solved using distance-1 

vertex coloring. The reason for this is that the definition of interference is different 

for these types of networks. For these networks, nodes u and v cannot have the same 

color if either: 

1. u and v are adjacent     or 

2. 3w G V where w is adjacent to both u and v 

These conditions are shown in figure 2.1. This problem is called distance-2 vertex 

coloring and has been studied by several authors within the context of networks 

[20, 51, 47]. All of these authors used a network model which incorporated uniform 

range transceivers. The result being that adjacency in these models is a symmetric 

relation (i.e., if aßb then bi?a). This issue will be discussed in section 2.5. 
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Figure 2.1:  Conditions under which nodes u and v cannot have the same color in a 

distance-2 coloring of graph G. 

Link scheduling is commonly used when the network uses routing information to 

transmit messages between transceivers which can only send messages through inter- 

mediate nodes. For link scheduling the issue of the access method becomes important 

in defining interference within the network [48, 33, 34]. Hu examines spread spectrum 

communication using Code Division Multiple Access with pairwise code assignment. 

This allows multiple messages to be received at a transceiver using orthogonal codes to 

discriminate between the received signals. When a strict pairwise assignment scheme 

is used, secondary interference (where a transceiver receives an unintended message) is 

not an issue, however, this is not true of "hybrid" code assignments [33, 34]. Pairwise 

code assignment reduces the constraints caused by interference within the network 

and allows traditional edge coloring to be used in assigning codes. Though edge 

coloring is an NP-Complete problem [32], efficient polynomial time approximation 

algorithms exist to determine near optimal edge coloring for arbitrary graphs. The 

worst case bounds for such algorithms is 0(1) in that the solution is guaranteed to 

be no more than the minimum (optimal) number of colors plus one. For this reason 

the primary focus of research has been on a more general problem where secondary 

interference, as described in chapter 1, is present. This is the link scheduling problem 

examined in [48, 47], called prn-coloring in those works. That terminology is adopted 

in this work to remain consistent with existing literature. 

A formal definition of is: 

Given a graph G = (V,A), a prn-coloring of the graph is a mapping 
{$ : (a, b) e A -+ Af\(f>(a, b) = <£(c, d)<&a^b^c^d and (a, d), (c, b) £ 

A}. 

Note that while there is a restriction on links between the transmitting and receiving 
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transceivers in prn-coloring, there is no restriction on links from or between the 

receiving transceivers or the transmitting transceivers. Figure 2.2 depicts these two 

situations. In figure 2.2(a) the transmitting transceivers do not interfere, while in 

figure 2.2(b) the receiving transmitters do not interfere. 

(a) (b) 

Figure 2.2: Non-interfering transmissions in link scheduling. 

2.3    Graphical Models 

Several graphical models have been used to represent networks. These graph mod- 

els were all constructed by using the same construction method. The transceiver (or 

transmitter) positions and radii were used to define the graph vertices and edges re- 

spectively. The resulting graphs were then treated as one of the graph types used in 

modeling. Early network problems involved frequency assignment for radio and televi- 

sion stations, and these were modeled primarily by arbitrary graphs (though they were 

also modeled by unit disk graphs which will be defined later) [30]. As the focus shifted 

away from transmitters to transceivers, and the problem changed from a distance-1 

to a distance-2 coloring problem for broadcast scheduling, restricted classes of graphs 

became attractive as network models.   This was due to the existence of reasonable 
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algorithms for solving graph coloring problems for these restricted graphs. 

Three primary graph models have been proposed in the literature. The most 

restricted of these three, trees, is desirable because of the simplicity of coloring the 

graph. The other two predominant models are planar graphs and arbitrary graphs. 

It must be noted that most network investigators have concerned themselves with 

the algorithms used rather than the particular model used. Therefore, most existing 

work uses arbitrary graphs as the preferred network model. 

A fourth graphical model has been used in the domain of the frequency assignment 

problem. Unit disk graphs define regions of interference for groups of fixed position 

transmitters in this problem domain. They have not been used in the more complex 

domain of network scheduling. 

2.3.1    Trees 

Trees are the simplest graphical representation used in modeling networks. There 

are many practical network problems which can be addressed using tree models (mes- 

sage routing and propagation, just to name a few). The use of trees as a model for 

solving network scheduling is fairly recent, and it is claimed that most existing packet 

radio networks can be modeled by trees [5]. 

C^O 

o—o 
o—o 

Figure 2.3: A network which cannot be accurately represented by a tree. 

The main attraction of tree models is the simplicity of scheduling.   A tree can 

be colored (and the corresponding network scheduled) using a minimum number of 
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colors in polynomial time. This is true whether discussing distance-1 or distance- 

2 coloring. Unfortunately, trees are not flexible enough to represent many possible 

network configurations. Figure 2.3 is an example of a graph which has no accurate 

representation as a tree. 

2.3.2    Planar Graphs 

The limitations of trees led Ramanathan to propose planar graphs as the model 

of choice [48, 46, 47]. Planar graphs do provide more fidelity in representing the 

structure of radio networks. For example, the network in figure 2.3 is a planar graph. 

This added flexibility of representation does come at a cost because the algorithms 

for distance-2 coloring of planar graphs are more complex and require more time to 

execute than those for trees. The other problem with planar graphs is an inability 

to represent valid (and likely) network configurations. Just as with trees, this limits 

the applicability of planar graphs in solving radio network scheduling. The network 

in figure 2.4 is a simple example of a network which cannot be accurately represented 

using a planar graph. 

Figure 2.4: A simple network with no planar graph representation. 

Ramanathan and Lloyd recognize this shortcoming of their model, and discuss 

near-planar graphs as being the practical model used in their work [48, 47]. In 

developing solutions using this model, the graphs are decomposed into in and out 

oriented graphs for link scheduling, and rely on bidirectional communication links in 

broadcast scheduling. Their approach changes the process of coloring a single graph, 
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Figure 2.5: A network with poor planarity (high thickness), a possible result of in- 
creased network density. 

to one of coloring a set of interrelated planar graphs. The measure of planarity they 

use is the thickness of a graph, which is defined as the minimum number of planar 

graphs into which a graph can be partitioned. It is precisely these problems which 

limit the application of planar graphs as models of radio networks. 

Figure 2.5 shows that as the density of transceivers increases in any given area, 

the planarity of the graphical representation will decrease, further limiting the ap- 

plicability of planar graph models to representing the network. With the projected 

increase in the usage of communication networks and no foreseeable change in the 

radio spectrum being used, planar models will be unable to accurately represent the 

networks being scheduled. 

2.3.3    Arbitrary Graphs 

If these restricted classes of graphs cannot accurately model radio networks, why 

use them? One alternative is to use arbitrary graphs to represent the network. The 

question is, how accurately do arbitrary graphs model radio networks. The reason 

for using restricted graphs is to use a model which gives a sufficiently accurate repre- 

sentation while illuminating some aspects of the problem structure which might help 
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in solving the problem (and of course the hope of finding a model for which known 

polynomial time algorithms exist). Arbitrary graphs have been studied in [51, 20]. 

Arbitrary graphs have the advantage of being able to represent all possible net- 

work configurations. We have shown that this is not possible with the two other 

graphical models proposed in the literature. But how accurately do arbitrary graphs 

represent the network? One way of characterizing a class of graphs is to define a 

set of subgraphs called forbidden subgraphs. We used this idea in showing that trees 

and planar graphs do not accurately represent radio networks, by displaying network 

configurations which are forbidden subgraphs for each type of graph. In this section, 

we will show that networks can be modeled by a restricted class of graphs by showing 

some arbitrary graphs which have no real physical counterpart in radio networks. 

Figure 2.6 shows several arbitrary subgraphs which have no physical representa- 

tion in radio network topology. All the graphs in this figure have been identified as 

forbidden subgraphs of the class of graphs representing radio networks composed of 

uniform transceivers. 

Figure 2.6:  Forbidden subgraphs of the class of graphs representing radio networks 
consisting of uniform transceivers. 

From this argument it is clear that arbitrary graphs do not capture the geomet- 

ric limitations present in the physical system being modeled. Even if non-uniform 

transceivers are allowed in the model of the network, the resulting graphical represen- 
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tations will not be arbitrary. Figure 2.7 shows a simple example of a directed graph 

for which no corresponding physical network can be constructed. 

(a) (b) 

Figure 2.7: A simple directed graph with no corresponding physical network. 

Note there is no combination of ranges and locations for transceivers a-f which 

leaves an overlap in the communication ranges of c and d which is not also contained 

in the communication range of one of the other transceivers. Therefore, there is no 

location for transceiver g to be placed in figure 2.7(b). 

2.3.4    Unit Disk Graphs 

Another type of graph which has been examined with regard to the frequency 

assignment problem is the unit disk graph [30]. This type of graph is of interest 

because it is a special case of the graphical model proposed in chapter 3. For the 

frequency assignment problem, this type of graph is constructed in the following 

manner. A disk of unit radius is placed on a plane at the position of each transmitter 

to be assigned a frequency (it is assumed all transmitters have the same range). A 

vertex in the unit disk graph appears for each transmitter, and transmitters t{ and 

tj have an edge between them if their corresponding disks overlap. This is useful for 

the problem of frequency assignment since any receiver in the region of overlap would 

be within the transmission range of both U and tr Note that this model is based on 
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the idea of radio transmitters rather than communicating transceivers in a network. 

2.4    Complexity of Graph Coloring 

The use of graphs to represent networks led to the use of graph coloring algo- 

rithms for scheduling and frequency assignment. Specifically, frequency assignment 

corresponds to distance-1 vertex coloring, broadcast scheduling in radio networks cor- 

responds to distance-2 vertex coloring, while link scheduling corresponds to a variant 

of edge coloring called prn-coloring. Graph problems are known to be difficult prob- 

lems, and NP-completeness proofs exist for the coloring problems of various restricted 

graphs. There are also specific types of graphs for which graph coloring (for example 

distance-1 vertex coloring of trees) is known to be solvable in polynomial time. One 

reason for pursuing this work is to determine if the type of graphs constructed for 

network modeling can be solved in polynomial time. 

Optimality is an important issue in developing schedules. If just one extra schedule 

position more than the minimum (optimal) number is used every 5 seconds, 720 

schedule positions are wasted each hour. Measured as a percentage, a schedule which 

is 1% longer than optimal wastes nearly 15 minutes a day. The NP-completeness of 

graph coloring for specific graph types means that approximation algorithms must be 

used to color the graph and determine a usable schedule. The amount of error in the 

approximate solution is a required trade off to obtain schedules for many networks in 

a reasonable amount of time [23]. 

Tree graphs are known to be colorable in polynomial time. This result holds for 

both distance 1 and 2 vertex coloring, and is the reason the Bar-Yehuda, et. al. [5] 

propose that all networks be modeled by trees. Similarly, edge coloring in trees can 

be done in polynomial time (polynomial on |V|2 or \E\). Garey and Johnson show in 

[23] that graph K-colorability for arbitrary graphs is NP-complete for all K>3, and it 

remains NP-complete with K=3 for planar graphs having no vertex degree exceeding 

4 [24]. Hale shows that vertex coloring for unit disk graphs is also NP-complete [30]. 

However, the problems we are looking at are distance-2 (2-hop) vertex coloring and 

edge coloring. Distance-2 coloring is not necessarily NP-complete based solely on the 



23 

NP-completeness of the vertex coloring problem. 

There are various approaches to proving distance-2 vertex coloring NP-complete. 

For planar graphs, Ramanathan and Lloyd [46] proved the 7-planar-distance-2 col- 

oring problem is NP-complete by construction from a &-distance-2 coloring proof for 

arbitrary graphs in [21], where k > 3. 

Ramanathan uses component construction in his proof. The choice of planar 

graphs is due to the use of planar graphs as the network model in his work. In 

developing components for the polynomial time transformation of an arbitrary graph 

to a planar graph, the complexity of the edge crossover became the driving force 

in defining exactly what transformation was required. The crossover component in 

[48] required a minimum of 7 colors for a valid distance-2 coloring. This is why 

Ramanathan proved 7-planar-distance-2 coloring NP-complete. 

Another, more general proof for arbitrary graphs appears in [51] and [20]. These 

proofs are based on an earlier proof by Ephremides and Truong which contained an 

error. The following is a sketch of this more general proof, using an undirected graph 

as the network model. 

The method of proof is to use the network graph G = (V, E), and construct a new 

augmented graph Ga = (Va, Ea) from G. New nodes are added to the graph, where 

each new node represents an edge from the set E. Then new node set is then defined 

by 

Va = V[j{vh]\(l,j)eE} 

Edges are then added which connect the new node to the two vertices i and j, and 

to all the other newly added nodes. Therefore, 

Ea = £U{Ki»0,Ki>i)}U{Ki.uM)l(^i)>(fc»0 e E} 

Finally, another new graph, G', is then constructed from Ga such that G' = (Va, E') 

where E' = Ea — E. It is then shown that if there is a fc'-distance-2 coloring solution 

for G', there is a k-coloring solution to G, where k = k'-\Va-V\. For example, the 

graph, G, in figure 2.8(a) becomes the graph in figure 2.8(b). 

Ramanathan and Lloyd also show the complexity of link scheduling using prn- 

coloring (the derivative of edge coloring discussed above) is NP-complete.   Their 
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(b) 

Figure 2.8: Parhi's transformation of G to G' for a given graph. 

method of proof is by component replacement using the NP-completeness of 7- 

planar-distance-2 coloring to prove the complexity of 7-planar-prn-coloring is NP- 

complete [48, 46]. 

2.5    Model and Solution Limitations 

The graph models used previously in examining and scheduling all lack fidelity in 

representing the problem. In addition, the graph coloring problems which have been 

used to solve the network scheduling problem using these graphs have been applied 

directly without regard to the problem domain being modeled. 

2.5.1    Model Fidelity 

As shown previously, tree, planar and arbitrary graphs all fail to capture the 

characteristics of the network. Both trees and planar graphs were shown to be too 

restrictive. They do not represent the problem domain characteristics which are 

important to scheduling. Common network configurations cannot be represented 

using these graphs. Arbitrary graphs, on the other hand, fail to capture the geometric 
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limitations of the physical system within the model. 

The transceiver interconnections are the characteristics of radio networks which 

are required to solve the scheduling problem. The graph models previously used either 

over constrain the problem by ignoring existing connections or consider too general 

a problem by not restricting interconnections at all. Essentially, the wrong problems 

were solved in previous work. 

2.5.2    Undirected Graph Coloring 

Graph coloring is not traditionally discussed for directed graphs, rather only for 

undirected graphs. The imposition of this restriction reduces the efficiency of graphi- 

cal solutions to problems in some areas. In particular, multi-hop radio networks with 

transceivers of various ranges are over constrained. 

For example, consider the situation in figure 2.9.   In this case, transceivers B 

Figure 2.9: Transceiver locations with ranges highlighted. 

can transmit to both A and C. However, neither A nor C can transmit to B, nor 

can they transmit to each other. Using the undirected graph model results in the 

representation in figure  2.10. 

Based on this representation, a distance-2 coloring of this graph would require 3 

colors, corresponding to 3 schedule positions. The traditional restriction of graph col- 

oring problems to undirected graphs introduces additional constraints which increase 
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Figure 2.10: Undirected graph representation of figure 2.9. 

the number of colors used. The resulting schedules are therefore clearly not optimal. 

The usual practice is to construct a graph, G = (V,E), from the network infor- 

mation. For each transceiver, £;, in the network a vertex, v{ <= V, is defined. For 

every pair of transceivers, U,tj, if the Euclidean distance d(ti,tj) is less than or equal 

to the range of either t{ or tj then an edge exists between u; and vr Depending 

on what variations exist between transceivers within the network, a large number of 

non-existent communication links may be added as edges in creating the network 

model. 



Chapter 3 

Network Modeling and Graph 

Coloring 

The discussion in chapter 2 showed the failings of previous network models and 

of the graph theoretic problems used to solve the network scheduling problem. This 

chapter presents a new model of radio networks which addresses the shortcomings of 

previous models. The graphical model, called a Point Graph, depicts transceivers by 

position and range. The graph theoretic problem of vertex coloring is then redefined 

in terms of directed coloring. 

3.1    Point-Graphs: A New Model 

It has long been recognized that networks can be described by a list of transceiver 

positions and ranges [30, 48, 50, 20]. These positions were used to define unit disk, 

planar, and arbitrary graphs respectively. No other information has ever been used 

in generating the graph models used to schedule radio networks. The reasons for the 

selection of a particular class of graph in modeling a network was driven by algorithms 

to perform graph coloring rather than the desire to accurately reflect the structure of 

the network being modeled. The model selected was then used to create solutions and 

to analyze the complexity of solving the scheduling problem. As shown in chapter 2, 

the previously used models do not accurately represent radio networks. By selecting 
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any of these models a different problem is addressed. 

In radio network scheduling the communication links between network transceivers 

are the essential information which must be used to determine a feasible schedule. 

As discussed in the chapter 2, there are certain characteristics which must be repre- 

sented by the model, and others which can be subsumed under other, more important 

characteristics. For the purposes of scheduling, interference, antenna height, direc- 

tional characteristics of the transmission pattern, etc., are all subsumed under the 

umbrella of transceiver range. This allows a problem definition in which the major 

characteristics of position and range are included. 

Given a set of points, pi G N-dimensional space, such that each point represents 

a location in the space, and a set of ranges r,- G R, where each range r,-, is associated 

with a point pt, a set of tuples is defined, < p{, rt>. A graph, G=(V,A), is constructed 

from this set of tuples. For every p,-, there is a vertex v{ G V. If the Euclidean distance 

d{pi,Pj) < ri then the directed arc (vh Vj) G A. A graph constructed in this way from 

a set of points is called a Point Graph. 

This definition allows the representation of networks in N-dimensions. In practice, 

only one, two, and possibly 3-dimensional point graphs are of current interest in 

modeling radio networks. Most networks are defined in 2-dimensional space, and 

only two dimensional test cases will be used in chapters 4 and 5. Given a network 

description of transceiver positions, U and ranges r,, a point graph can be constructed: 

G = (V,A), where Vt,- in the network, 3u; G V and \/thtj if the Euclidean distance 

d(ti,tj) < i\ where rt- is the range of transceiver i, then (vi,Vj) G A. For the rest of 

this work i>; will be used in place of £; in most formulae and definitions. 

The term Linear Point Graph is used to indicate a point graph created from a set 

of points in 1-dimensional space. It has the property that the graph, G, representing 

the network can be drawn as a straight line. Some special purpose networks exhibit 

this property. It is not necessary that the transceivers actually form such a line, only 

that it be possible to represent their interconnections by a set of points on a line with 

the associated ranges. Similarly, the term Planar Point Graph will be used to define 

a point graph created from a set of points in 2-dimensional space (since 2-dimensions 

define plane). Most existing networks are accurately modeled by 2-dimensional point 
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graphs. 

An additional restriction meriting special terminology is the case of fixed or uni- 

form range point graphs. For these graphs, W,-, r,- = d, for some constant d. While 

this definition is nearly identical to Hale and Clark, Colbourn, and Johnson [30, 15] 

and their definitions of unit disk graphs, the definition of the conditions for edge ex- 

istence differ. This difference is due to the definition of interference used in creating 

these graphs. Hale uses unit disk graphs in developing solutions to the frequency 

assignment problem. Edges in these graphs exist between vertices when the corre- 

sponding disks overlap. If the constant, d, is defined to be half the transmission range 

of the transceivers in the network, then Clark, Colbourn, and Johnson's definition 

of edge existence can be used to develop a digraph representation useful for network 

scheduling. 

A class of graphs similar to unit disk graphs which has been studied in the liter- 

ature is the space graph [43]. As with unit disk graphs, space graphs are defined in 

terms of a constant range. In addition, space graphs are defined as undirected graphs, 

and as such, represent a subclass of point graphs. 

Point graphs are not arbitrary, even when restricted to a uniform range. The 

graphs shown in figure 2.6 are forbidden subgraphs of the set of uniform range 2- 

dimensional point graphs. A uniform range point graph has the property that (u,-, v3) G 

A iff (vj,Vi) G A, and the term symmetric will be used to describe these point graphs 

(however, it is important to note that symmetric point graphs may be constructed 

from a set of points with non-uniform ranges). The following diagrams indicate the 

reasons why some of the graphs in figure 2.6 are forbidden subgraphs. 

Figure 3.1(a) is a forbidden subgraph for uniform range planar point graph. Fig- 

ure 3.1(b) demonstrates that there is no physical location for point "c" which would 

not add edges (6, c) and (c, d). Likewise, a transceiver network composed of uniform 

transceivers cannot have a set of five transceivers with the bidirectional communica- 

tion links as depicted in figure 3.1(a). 

Figure 3.2(a) is also a forbidden subgraph for uniform range planar point-graphs. 

Figure 3.2(b) demonstrates that there is no physical location for point "g" which 

would not add edges (/, g) and (b, g). Just as in figure 3.1, there is no way a transceiver 
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(a) (b) 

Figure 3.1: Justification of a forbidden subgraph for uniform range transceivers. 

(a) (b) 

Figure 3.2: Another forbidden subgraph of uniform range point graphs. 

network composed of uniform transceivers can have a set of transceivers with the 

bidirectional communication links as depicted in figure 3.2(a). 

The remaining subgraphs in figure 2.6 have the same property in that there are 

no uniform transceiver networks which can have the communication links depicted. 

They all represent forbidden subgraphs (i.e., graphs which cannot appear as vertex 

induced subgraphs in any uniform range point graph. 

An additional issue with respect to point graphs and forbidden subgraph charac- 

terizations, is that point graphs are defined as directed graphs, though symmetric 

point graphs are equivalent to undirected graphs. The forbidden subgraphs identified 
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in figures 3.1 and 3.2 are only applicable for graphs generated from uniform range 

points, and which are therefore symmetric. 

Forbidden subgraphs for non-uniform range point graphs are not as restricted 

since they do not necessarily result in symmetric point graphs. For example, if the 

undirected edges in figures 3.1 and 3.2 are replaced with the appropriate arcs, the 

vertex configuration shown in those figures can appear in point graphs. 

Figure 3.3 shows non-symmetric point graphs which have the same vertex config- 

uration as the forbidden subgraphs from figure 3.1 and figure 3.2. 

(a) 

Figure 3.3:  Non-uniform range point graphs with a set of points and ranges which 
correspond to the vertex configurations of figures 3.1 and 3.2. 

Figure 3.3(a) is a non-uniform transceiver model similar to the forbidden subgraph 

in figure 3.1(a), while (b) shows a set of communication links similar to those in 

figure 3.2(a). The additional complication of directed graphs makes it necessary to 

define separate forbidden subgraphs for uniform and non-uniform range point graphs. 

One such graph is shown in figure 2.7. 

Forbidden subgraph characterizations, while of interest to graph theoreticians, are 

outside the scope of this work. For this reason they will not be used to define point 

graphs in this dissertation. The question does arise as to exactly where point graphs 

fit in the set of all graphs. 

Figure 3.4 shows a representation of the sets of graphs, and the relationship be- 

tween trees, planar graphs, and point graphs. 

In this figure, point graphs are also divided into symmetric and asymmetric graphs. 
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Figure 3.4: The set relationship between trees, planar graphs and point graphs. 

As stated above, symmetric graphs are those for which (vi,Vj) <E A iff (vj,Vi) € A. 

Asymmetric point graphs are those for which this conditions does not hold. 

Another relation between graph types is the relation between point graphs, unit 

disk graphs, and space graphs. This relationship is shown in figure 3.5. 

As stated previously, unit disk graphs are 2-dimensional point graphs constructed 

from a set of points with a uniform range, r. The difference in definition between these 

graphs lies in the definition edges. For unit disk graphs, points within 2r of each other 

have an edge between them. Space graphs are defined for N-dimensional space, and 

any points separated by a Euclidean distance less than or equal to a constant. Both of 

these subsets of point graphs are symmetric graphs, as are all point graphs constructed 

from uniform range points. 
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Figure 3.5:  The set relationship between unit disk graphs, space graphs, and point 

graphs. 

3.2    Directed Coloring 

The term graph coloring is traditionally defined in terms of undirected graphs. A 

graph, G = (V,E), is undirected if the edge set, E, is defined as a set of unordered 

pairs of vertices from the vertex set, V. Two vertices, v^Vj G V are said to be 

adjacent if there is an edge (u,-,Uj) € E. Since the edge set contains unordered pairs, 

(Vi,Vj) = (vj,Vi). Adjacency is also considered to be an irreflexive relation, therefore 

Vu,-6V :(vi,Vi)£E. 

3.2.1    Traditional Graph Coloring 

Previous applications of graph coloring to network scheduling have relied on an 

undirected definition for the graph model [20, 30, 34, 48, 51]. The definition of coloring 

usually applied to graphs can be formally stated as follows: 

Given graph G = (V,E), a distance-1 vertex coloring, also called a 
graph coloring, is a mapping {$ : v -»• J\f\</>(vi) = <j>{vj) <S> (u,-,Uj) £ E} 

where V{, vj G V . 

This is the traditional graph coloring problem, but as previously stated, network 

scheduling requires interference between transceivers to be considered.   As a result, 
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distance-2 vertex coloring has been denned to take secondary interference between 

transceivers into account. A formal definition of (undirected) distance-2 vertex col- 

oring is: 

Given graph G = (V,E), a distance-2 vertex coloring is a mapping {<fr : 

v _>. M\<j>{vi) = <f>(vj) & {vi,Vj) i E and ßvk such that (u.-.Ufc), (vj,vk) G 

E} where Vi,Vj,vk G V . 

Note that the undirected nature of G implies (u,-,t>j) = (v3,vl) (i.e., that edges are 

defined by unordered pairs). 

3.2.2 Directed Coloring Defined 

Directed versions of these same definitions permit more precise modeling of the 

networks being scheduled. The definitions parallel those for undirected graphs and 

can be stated as follows: 

Given digraph G = (V,A), a directed distance-1 vertex coloring is 
a mapping {$ : v -► M\<f>{v{) = (j>{v3) & (v^v^^v^Vi) £ A} where 

Vi,Vj G V . 

The use of directed arcs necessitates the explicit mention of all the arcs. The un- 

ordered nature of edge definitions meant either permutation of the vertex pairs was 

sufficient to define edge existence. The definition for distance-2 coloring is similar: 

Given digraph G = (V,A), a distance-2 vertex coloring is a mapping 
{$ . v _> J\f\(j>(vi) = <I>(VJ) <& (t>i,Uj),(uj,Ut) £ A and ßvk such that 

(vi, vk), (vj,vk) G A} where u,-, Vj, vk € V . 

Note that for secondary interference the only concern is incoming arcs to a third 

vertex, vk. This is a significant issue in attempting to determine an optimal or near 

optimal network schedule using distance-2 vertex coloring. 

3.2.3 Directed Coloring Justification 

As stated in chapter 2, the use of undirected coloring introduces constraints on 

the coloring which do not necessarily exist in the network being modeled.   These 
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additional constraints, in the form of non-existent arcs, increase the number of colors 

used in coloring the graph, resulting in a longer schedule. The extent of this problem 

was investigated in [37], and is summarized here. 

Four common greedy distance-2 coloring algorithms were used in comparing the 

efficacy of using a directed graph model rather than undirected in solving sample 

network scheduling problems. The first algorithm is a random, greedy coloring algo- 

rithm. Transceivers represented by the graph vertices are selected at random from 

among all vertices not yet colored and are colored as they are selected. This algo- 

rithm is represented by the column "Rnd" in table 3.1. The next algorithm used 

a maximum degree first heuristic for determining the order of vertices selected for 

coloring. As each node is selected for coloring its associated edges/arcs are removed 

and the degree of adjacent vertices are modified to maintain an accurate degree rep- 

resentation. The results of this algorithm are found in the columns labeled "Max" in 

the tables of results. The third algorithm used a minimum degree last heuristic for 

ordering vertices for coloring. As with the maximum degree heuristic, as a vertex is 

selected its adjacent vertices degrees are modified. These results are contained in the 

columns labeled "Min". Finally, a distance-2 minimum degree last heuristic was used 

to order the vertices. In this case, vertices were ordered according to the number of 

adjacent vertices and those at distance-2. These results are contained in the columns 

labeled "D-2". 

Each table entry represents an average over 30 test cases of uniformly distributed 

transceivers. All transceivers were randomly positioned on a 200-by-200 grid, and 

assigned a range varying from 50-100% of the value found in the "Range" column 

in tables. Each such network was then colored using both undirected and directed 

graph representations. 

For the sample data sets, directed coloring used 79% of the colors of the corre- 

sponding undirected coloring algorithms. The improvement depends on the density 

of the graph and the corresponding number of induced communication links described 

above. There are no circumstances under which an algorithm using the directed col- 

oring definition will use more colors than the same algorithm using the traditional 

definition of graph coloring. 
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Table 3.1: Comparison of undirected and directed graph coloring algorithms. 

No. 
Nodes Range 

Undirected Directed 
Rnd Max Min D-2 Rnd Max Min D-2 

200 
20 12.40 12.40 11.47 11.43 10.33 11.03 9.20 9.43 

30 22.86 22.63 21.16 21.13 18.83 17.76 16.76 16.46 

40 36.73 35.56 33.80 33.56 28.83 27.40 25.56 25.63 

250 
20 15.93 15.80 14.86 14.70 13.30 12.73 11.83 11.86 

30 28.50 27.66 25.96 25.76 22.50 22.06 20.23 20.30 

40 45.86 44.23 42.30 42.10 35.40 33.60 32.03 31.43 

300 
20 17.96 17.56 16.66 16.50 14.73 14.33 j 13.36 13.20 

30 33.73 32.33 31.20 30.93 26.13 25.00 23.90 23.30 

40 53.76 52.43 49.33 48.83 41.93 39.96 37.43 36.93 

Due to the disparity in performance cited above, directed coloring will be used for 

all further work in this dissertation, unless stated otherwise. 

In this chapter, a new graph type was defined for modeling radio networks. This 

model accurately represents the communications between transceivers in the network. 

In addition, the problem of directed coloring was defined and shown to be superior 

to the traditional model when dealing with asymmetric graphs. 



Chapter 4 

Broadcast Scheduling 

This chapter examines broadcast scheduling of radio networks. The first section 

looks at the complexity of scheduling by analyzing vertex coloring of point graphs. 

The next section discusses the development of approximation algorithms based on 

geometric properties of point graphs. The performance of these algorithms are com- 

pared to other coloring algorithms in the next section. The final section discusses the 

results obtained in the preceding sections. 

4.1     Complexity of Coloring Point Graphs 

This section explores the complexity finding an optimal solution to the problem of 

vertex coloring point graphs. As mentioned previously, optimality is of interest due 

to the cumulative effect of non-optimal schedules (a 1% error is approximately 15 

minutes per day). Since previous work has focused on undirected coloring, both undi- 

rected and directed coloring are examined, and algorithms or proofs are given to sup- 

port arguments about the complexity of each case. To provide structure, this section 

first explores undirected coloring of 1-dimensional and 2-dimensional point graphs. 

The section concludes by examining directed coloring for both types of graphs. 
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4.1.1    Undirected Coloring 

As previously stated, undirected coloring is the "traditional" coloring problem. 

Point graphs are inherently directed, and while it may not make sense to use the 

concept of undirected coloring for them, the common practice has been to treat 

directed graphs as undirected when coloring them. However, in the special case of 

uniform range point graphs undirected and directed coloring are identical. It is also 

true that in the case of distance-1 coloring, the distinction between directed and 

undirected coloring disappears. So while it may be irrelevant to the application area 

of radio networks, undirected coloring of point graphs is discussed for the sake of 

completeness. 

Distance-1 Coloring of Linear Point Graphs 

Undirected linear point graphs are a special case of graph coloring which can 

be solved in polynomial time. Some examples of this type of graph is shown in 

figure 4.1. (Recall that the name "linear" refers to the positions of the points not to 

the connections between points.) 

This type of problem is similar to the channel-assignment problem in VLSI layout 

and design. An optimal polynomial time algorithm for the channel-assignment prob- 

lem was proposed by Gupta, Lee and Leung [28]. While their algorithm was intended 

for channel-assignment, it can be used to color an interval representation of a linear 

point graph modeling a network of uniform range transceivers. The input to the al- 

gorithm is a set of intervals, where each interval corresponds to half the range of each 

transceiver. For each transceiver, i, let x{ represent half the range in one direction of 

the linear network, called a left endpoint, and y; represent half the range in the other 

direction, a right endpoint. These endpoints define a set of intervals where any two 

overlapping intervals cannot have the same color (or channel assignment). 

Gupta, Lee, and Leung's algorithm is as follows: 

Step 1: Sort the 2N endpoints so zt < zi+i... Z2N-
1 

Step 2: COUNTER <- 0, MAXCOLOR <- 0 

COLOR <- 1 
Step 3: for i = 1 to N do: 
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(b) (c) 

Figure 4.1: Some simple examples of uniform range linear point graphs. 

NEXT(i) <- i + 1 
Step 4: for j = 1 to 2N do: 

if Zj is a left endpoint, Xk 
COUNTER «- COUNTER + 1 
MAXCOLOR f- max{COUNTER,MAXCOLOR} 

ASGN(k) <r- COLOR 
COLOR f- NEXT(COLOR) 

else Zj is a right endpoint yk 
COUNTER <- COUNTER - 1 
TEMP <- ASGN(k) 
NEXT(TEMP) <r- COLOR 
COLOR <r- TEMP 

An argument for the correctness of this algorithm is presented in [28] and will not 

be presented here. The algorithm itself requires 0(n In n) time to execute. For graphs 

where each point may have a different range, this algorithm must be modified. Figures 

such as figure 4.2 can be distance-1 colored by using the following modification to 

Gupta, Lee, and Leung's algorithm. 

LIf Zi =z. i+1 = Zj, the right endpoints appear before the left endpoints. 
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Figure 4.2: An undirected representation of a non-uniform range linear point graph. 

Note that in cases where variable ranges occur, the simple interval algorithm above 

will not work because it relies on a technique of using half the range determining the 

values of the left and right endpoints. While two transceivers are in range of each 

other when their left and right endpoint are at the same position and their ranges are 

identical, no such statement can be made if the ranges vary. 

First, the modified algorithm uses four points for each transceiver. As with the 

preceding algorithm left and right endpoints are defined, however these are based on 

the full range rather than half the range. In addition, the other points, lp{ and rpi, 

representing the position of transceiver i are added, and are called the left position 

and right position points, respectively. The algorithm then becomes : 

Step 1: Sort the 4N endpoints so Z{ < zi+1... z4N.2 

Step 2: COUNTER f- 0, MAXCOLOR f- 0 
COLOR <- 1 

Step 3: for i = 1 to N do: 
NEXT(i) f- i + 1 
ACTIVEX) <- FALSE 
for j = 1 to N do: 

INRNG(i,j) ^ FALSE 
Step 4: for j = 1 to 4N do: 

if Zj is a left endpoint, Xk 
for i = 1 to N do: 

CLIST(k,i)<-NEXT(i) 
LCLR{k) <- COLOR 
ACTIVE(k) <- TRUE 

else if Zj is a right endpoint, yk 

COUNTER <- COUNTER - 1 
TEMP 4- ASGN(k) 
NEXT(TEMP) <r- COLOR 
COLOR <r- TEMP 
for i = 1 to N do: 

if ACTIVE{i) A -iINRNG(k, i) 
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TEMP <- ASGN(k) 
CLIST(i,TEMP) <- LCLR{i) 
LCLR{i) f- T£MP 

else if Zj is a left position, Ipk 
COUNTER <- COUNTER + 1 
MAXCOLOR <r- max{LCLR(k), MAXCOLOR} 
ASGN[k) <r- LCLR(k) 
if COLORS LCLR(k) 

TEMP <r- COLOR 
while NEXT(TEMP) / LCLR(k) do: 

TEMP <- NEXT{TEMP) 
NEXT{TEMP) <- NEXT{LCLR(k)) 

COLOi? <- NEXT{COLOR) 
ACTIVE{k) <- FALSE 
for i = 1 to N do: 

if ACTIVE(i) A LCLR(i) ^ LCLR{k) then 
TEMP 4- LCLR(i) 
while CLIST{i,TEMP) ^ LCLR{k)A 

TEMP < MAXCOLOR do: 
TEMP *- CLIST{i,TEMP) 

if T£MP < MAXCOLOR then 
NEXT(TEMP) <r- NEXT(LCLR{k)) 

else if ACTIVE(i) 
LCLR{i) <r- CLIST(i,LCLR(i)) 

else Zj is a right position, rpk 
for i = 1 to N do: 

if ACTIVE(i) then 
INRNG(k,i) ^TRUE 

In this algorithm, a separate list is maintained for each transceiver to keep track 

of other transceivers whose positions are in range of the transceiver being colored. 

The disparity in ranges makes it necessary to maintain this information to determine 

an optimal coloring. For example, in figure 4.3 the intervals for transceiver 1 and 3, 

2 and 4, 3 and 4, and 2 and 5 overlap, but there is no communication link between 

of these transceiver pairs. 

2If Zi = Zi+i = ... = Zj, the left position points appear before right endpoints which appear 
before the left endpoints which appear before right position points. 
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3 
1   I »- 

Figure 4.3: Interval representation of an non-uniform range linear point graph. 

As the left endpoint (extreme range) for a transceiver is encountered, the current 

list of available colors is started for that transceiver. This list is maintained separately 

for each transceiver. As the right endpoint is reached for other transceivers, the entry 

in array INRNG indicates if the transceiver position is within the range of any other 

not yet colored transceiver. If it is not in range, the transceiver whose right endpoint 

has been reached can have its color returned to the list of available colors for the not 

yet colored transceiver, otherwise the color of that transceiver remains unavailable 

for the not yet colored transceiver and its list of available colors remains unmodified. 

Left and right position points allow a transceiver vertex to be colored based only 

on those transceivers whose positions are to the left of the one being colored, while at 

the same time maintaining information about which transceivers to the right have the 

one being colored within their range. As a transceiver is colored, that color must be 

removed from the list of available colors for all those nodes not yet colored, providing 

the color appears in the list. Figure 4.4 shows a situation where the assigned color 

may not appear in the list of available colors. 

1 

Figure 4.4: Interval conditions under which a color assigned to transceiver 2 will not 
be in the list of available colors for transceiver 3. 

Assume transceiver 2 is assigned the same color as transceiver 1.  As transceiver 

2 is colored, its color will not appear in the list of colors for transceiver 3, and will 
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not need to be removed from the 3's list of available colors because transceiver 1 is 

within the range of 3. Therefore as the right endpoint of 1 is reached, the list of 

available colors for 3 will not be changed (this is also true when the right endpoint of 

transceiver 2 is reached). 

Maintaining these lists increases the complexity of the overall algorithm from 

0(nlnn) to 0(n2), though it remains polynomial. The assignment of a color is post- 

poned until the position of the transceiver is reached to prevent erroneous determina- 

tion of interference between transceivers which only share overlapping transmission 

ranges. 

Distance-2 Coloring of Linear Point Graphs 

The optimal algorithm for distance-2 coloring presented here is also based on 

Gupta, Lee, and Leung's algorithm. Three values are generated for each transceiver 

in the linear network, one each for a left endpoint, a right endpoint, and the position 

of the transceiver. 

Step 1: Sort the 3N endpoints so Z{ < z,-+i ... z^^? 
Step 2: COUNTER <- 0, MAXCOLOR <- 0 

COLOR f- 1, NUMTOPROC <- 0 
Step 3: for i = 1 to N do: 

NEXT{i) <r- i + 1 
Step 4-' for j = 1 to 3N do: 

if Zj is a left endpoint, x^ 
NUMTOPROC f- NUMTOPROC + 1 
WAITING(NUMTOPROC) <- k 

else if Zj is a right endpoint y^ 
COUNTER <- COUNTER - 1 
TEMP <- ASGN(k) 
NEXT(TEMP) <- COLOR 
COLOR <r- TEMP 

else Zj is a position point p^ 
for i = 1 to NUMTOPROC do: 

COUNTER <r- COUNTER + 1 
MAXCOLOR <- max{COUNTER, 

MAXCOLOR} 
ASGN(WAITING^)) <- COLOR 
COLOR <- NEXT(COLOR) 
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NUMTOPROC f- 0 

The following argument shows the correctness of this algorithm. 

Given an linear point graph with N vertices. The first step of the algorithm is 

to construct a set of points such that x{ < p, < yt iff arc (vi,Vj) <E A. Note that 

V,: 1 < i < N, Xi < pi < j/j. These points are sorted by their location to produce a 

list, Z. Ties between points in the sorting are resolved according to the type of point. 

If Xi = Pj = yk for transceivers i,j, and k, the points will be ordered in the sort such 

that if zi = Xi, zm = pj, and zn = yk then I < m < n. 

At all times during the execution of this algorithm, NEXT is a stack of the colors 

which are available, and WAITING is a list of vertices for which the left endpoint, x; 

has been reached but for which no color has been assigned. When a position point, 

Pj is reached colors are assigned to those vertices which do not already have a color. 

The following conditions exist for all vertices: 

• Case 1: X{ has not been encountered. This vertex does not affect the colors 

available to color pj in a greedy manner and can be ignored for the moment. 

• Case 2: y; has already been encountered. This vertex is not in range ofpj, and 

since j has not been colored, V{ is not in the range of pj 

• Case 3: v{ has a color, and y,- has not been encountered. Vj is distance-1 

from this vertex and must have a different color. In addition, all other ver- 

tices distance-1 from Vj must have a different color from u,- (the distance-2 

requirement). 

• Case 4: a;,- has been encountered, but pi has not, and v,- has not been as- 

signed a color. This vertex is one of those contained in the list WAITING. It is 

distance-1 from Vj, and distance-2 (and distance-1) from all other vertices in 

the WAITING list and those meeting condition 3 (which are all other vertices 

which are currently assigned a color). 

3If zt = Zi+i = . . . = Zj, the left endpoints appear before position points which appear before the 

right endpoints. 
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As the algorithm proceeds, at each position point, colors are assigned only to 

those vertices meeting condition 4. At each such point the total number of colors 

used equals the degree of the node plus one, which is optimal for distance-2 coloring. 

All colors which are not assigned to a vertex meeting condition 3 are on the stack 

NEXT, guaranteeing an optimal solution to coloring for a undirected linear Point 

graph. 

The time complexity for this algorithm is determined by the time to sort the 

points, and is O(nlnn). 

Distance-1 Coloring of Planar Point Graphs 

The coloring problem for arbitrary graphs has long been known to be an NP- 

complete problem. In fact, Garey and Johnson show that it is likely that no good 

approximation algorithms may be found (a "good" approximation algorithm is defined 

as one whose performance is bound by a constant, that is, its answer is always < 

c* optimum) [23]. The planar point graph problem has been investigated by various 

authors for the uniform range case called unit disk graphs [11, 15, 30]. The previous 

work described this problem as partitioning points in the plane by Burr [11], and 

distance-1 coloring of unit disk graphs by Hale and by Clark, Colbourn and Johnson 

[30, 15]. This problem has been shown to be NP-complete with Burr providing a 

proof which is restated using a different construction technique by Clark, Colbourn, 

and Johnson. 

The NP-complete nature of this problem leads to the common use of approxima- 

tion algorithms for finding reasonable rather than optimal solutions. The interested 

reader is referred to Burr for a geometric proof. We describe the proof discussed by 

Clark et. al. 

The proof is based on a polynomial time transformation from PLANAR GRAPH 

3-COLORABILITY with maximum degree 3 (shown to be NP-complete in [24]). 

They transform a planar graph, G = (V,E), with maximum degree 3 into a unit disk 

graph, Gf, such that G is 3-colorable iff Gf is 3-colorable. Their transformation uses 

a result by Valiant [57]: 
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A planar graph with maximum degree 4 can be embedded in the plane 
using 0(\V\) area in such a way that its vertices are at integer coordinates 
and its edges are drawn so that they are made up of line segments of the 

form x=i or y=j, for integers i and j. 

Each edge between nodes u and v, for all u and v, is then replaced by a construct 

such as in figure 4.5, which can be bent around corners provided the segments are at 

least 10 units long. This requirement can be ensured by the construction. 

Figure 4.5: Transformation construct for an edge between vertices u and v, used in 
NP-completeness proof by Clark, Colbourn, and Johnson. 

An examination of this construction will show that in a three coloring of the 

graph GV, vertices u and v must be assigned colors which are different from each 

other. Therefore, if Gf is 3-colorable, must G also be 3-colorable. 

The NP-completeness for distance-1 coloring of planar point graphs follows from 

the NP-completeness results for the subset, unit disk graphs. 

Distance-2 Coloring of Planar Point Graphs 

There are various approaches to proving distance-2 vertex coloring NP-complete. 

For planar graphs, Ramanathan and Lloyd [46] proved the 7-planar-distance-2 col- 

oring problem is NP-complete by construction from a 7-distance-2 coloring proof for 

arbitrary graphs in [21] (Even et.al. proved a related problem by component design, 

and argued that modification of their construction could be used for k-distance-2 

coloring of arbitrary graphs. The choice of k=7 for Ramanathan and Lloyd is deter- 

mined by the structure of their component constructs used in converting arbitrary 

graphs to planar graphs). Hu uses a technique first proposed by Ramaswami in prov- 

ing NP-completeness [33].   A later more elegant version of Ramaswami's proof for 



47 

arbitrary graphs appears in [51, 20]. Of these proofs, the most general is the one from 

[51, 20]. Unfortunately, the results for arbitrary and planar graphs do not provide 

any information about planar point graphs. As demonstrated earlier, planar point 

graphs are neither arbitrary nor are they planar, therefore results for these two classes 

of graph cannot be extended to planar point graphs. 

Though they discuss undirected distance-1 coloring, Clark, Colbourn, and John- 

son do not address undirected distance-2 coloring of unit disk graphs. 

A proof of the NP-completeness of uniform range planar point graph 7-colorability 

can be constructed using a result from [8], and component constructions similar to 

those in [48]. The result from Biedl and Kant [8] can be stated as follows: 

Lemma 4.1 Given a connected graph, G, the vertices and edges can be embedded in 

a plane in linear time. 

This lemma, and the components shown in [48] allow an instance of uniform 

range planar point graphs to be produced by transforming a connected graph. This 

instance is then distance-2 7-colorable iff the original connected graph is 7^colorable. 

Graph 7-colorability is NP-complete since undirected connected graph ^-coloring is 

NP-complete for all fixed k > 3 [23]. Tighter bounds on this may be possible. 

Distance-1 Coloring of _D-Dimensional Point Graphs 

The colorability of D-dimension point graphs for D > 2 is NP-complete as a 

direct result of the NP-completeness of undirected coloring for planar point graphs, 

a subset of D-dimension graphs. 

Distance-2 Coloring of D-Dimensional Point Graphs 

^dimensional point graph colorability is NP-complete. This is a direct result of 

the NP-completeness of 2-dimensional point graphs. 
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4.1.2    Directed Coloring 

Distance-l Coloring of Linear Point Graphs 

The algorithm presented for undirected distance-l coloring of linear point graphs 

will also produce an optimal, conflict free directed distance-l coloring. The reason for 

this is that the criterion for distance-l directed coloring relies only on the existence of 

an arc between the nodes being colored, not on the direction of the arc. This problem 

can be optimally solved in O(nlog n) time using the algorithm previously described. 

Distance-2 Coloring of Linear Point Graphs 

This problem can also be optimally solved in polynomial time. The algorithm 

described for undirected coloring will also optimally determine a directed coloring. 

An examination of this algorithm shows that the points are colored in order of their 

left endpoints. The optimality of the algorithm can be shown by examining the 

coloring process. First note the minimum number of colors necessary to distance-2 

color a graph must be at least the maximum in-degree of all the vertices in the graph 

plus one. The other characteristic to note is that the array NEXT acts like a stack 

which contains all possible colors. As the algorithm proceeds, the contents of the 

stack are "popped" off as a vertex is colored, and "pushed" back on the stack when 

a vertex no longer affects the coloring of other vertices. 

Figure 4.6 shows a sample point i and the arcs to and from that point. When the 

position point for i is reached, the color assigned to vertex n will be the one which 

was last placed on NEXT. When co-located points are sorted, the left endpoints 

will precede the position points, which will precede the right endpoints. Therefore, 

WAITING will contain i, p, and q, in that order even though the left endpoint for q is 

co-located with the position point for i. Vertex i will then receive the same color as 

vertex n (the one on the "top" of the stack), and p and q will receive colors different 

from vertices m and o due to the secondary interference between them. 

After f, p, and q are colored there are a total of 5 of the N original colors contained 

in NEXT which are currently off the stack. This is exactly the degree of i plus one. 

The colors assigned to o and m are then placed on NEXT as their right endpoints are 



49 

n   > 

< q 

o    ^> 
^ • 

j 

<= • > 

Figure 4.6: A sample linear point graph node and the arcs to and from it. 

reached. When the position point for j is reached it is the only vertex in the array 

WAITING, and is assigned the same color as m. Because this is a directed coloring j 

and m do not have secondary interference and may therefore have the same color. It 

should be clear from this discussion that this algorithm remains optimal for directed 

coloring, and that distance-2 directed coloring of linear point graphs can be solved 

in O(nlnn). 

Distance-1 Coloring of Planar Point Graphs 

This problem is NP-complete as a direct result of the NP-completeness of unit 

disk graphs [11, 15]. The reason for this correspondence is twofold. First, the def- 

inition of directed coloring makes arc existence the sole requirement for adjacency. 

This has the result that for distance-1 coloring undirected and directed coloring are 

identical. Second, since the special case of uniform range (unit disk) planar point 

graph distance-1 undirected coloring is NP-complete, distance-1 directed coloring is 

also NP-complete. 



50 

Distance-2 Coloring of Planar Point Graphs 

The following is a proof of the NP-completeness of planar point graph distance-2 

colorability. 

Theorem 4.1 2-Dimensional Point Graph Distance-2 3-Color-ability (also called 

Planar Point Graph Distance-2 3-Colorability, PPGD2) is NP-Complete. 

Proof: It can easily be shown that PPGD2 G NP, a nondeterministic algorithm 

can be used to assign a coloring, the graph can then be checked in polynomial time to 

determine that vertices u and v have different colors if the Euclidean distance d(u, v) 

is less than the ranges of either u or v, or if 3w <= V such that d(u, w) < range of u 

and d(v, w) < range of v. 

The proof is a proof by a component design construction which transforms the 

problem, Planar Graph S-Colorability with Node Degree At Most 4 (shown NP- 

Complete by Garey, Johnson, and Stockmeyer [24]), into PPGD2. As previously 

noted, Biedl and Kant [8] present a linear time algorithm which produces an embed- 

ding of graph G=(V,E) on a grid such that each vertex is at a grid point and each 

edge is composed of vertical and horizontal segments with at most two bends. Start 

with an arbitrary instance, G=(V,E), of a planar graph with node degree at most 

4, use Biedl's algorithm to produce an embedding in the grid scaled by a factor of 3 

(guarantees a distance of at least three between all points). 

The remainder of the construction replaces the embedding with points in the 2- 

dimensional grid. There are two categories of points in the construction. Vertex 

replacement points replace the embedded vertices, and edge replacement points are 

positioned along the horizontal and vertical segments of the embedded edges. Edge 

replacement points are further divided into two types: biconnected points, and singly 

connected points. In all, three types of replacement points will be used. Type- 

1, vertex replacement points have a range of one unit, type-2, bidirectional edge 

replacement points have a range of 0.25 units, and type-3, singly connected edge 

replacement points have a range of 0.45 units. 

Type-1 vertex replacement points are positioned at the scaled embedding points 

for the vertices of the planar graph. Each vertex replacement point is assigned a range 
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of one unit. The result is a set of such points, P, such that each p{ G P, corresponds 

to a vertex from G, with position xt, y% from the embedding and range rt = 1 unit. 

Edge replacements are constructed by visiting each vertex replacement point in 

breadth first order. For each vertex all edges not yet replaced are replaced by de- 

termining positions for edge replacement points which follow the segments of the 

embedded edges. The positions for edge replacement points are shown in figure 4.7. 

The coordinates for the positions are expressed with respect to the vertex replace- 

ment point, v, located at (0,0), and with first segment of the edge being replaced 

as the positive x-axis. (The values used in this construction are not the only one 

which could be used, but are provided as a definition of exact values which create the 

desired properties in the resulting point graph.) 

(0,0) 

(1.1,0) (1.6,0) 

(1.4,0) (2,0) 

(.83,-.43) 
(1,-38) 

Figure 4.7:  Edge replacement point positions relative to the start vertex v and the 
first segment of the edge being replaced. 

Type-2 biconnected edge replacement points are used at coordinates (0.83, -0.43) 

and (1, -0.38) with a type-3 singly connected point at (1.1,0). This pattern is repeated 

with two more type-2 points at (1.4,0) and (1.6,0) followed by a type-3 point located 

at (2,0). For all but the last unit of the segments of the embedded edges, two type-2 

and one type-3 point are positioned along the segment of the edge being replaced 

such that they are 0.4, 0.6, and 1.0 units distance from the last type-3 point whose 

position was determined. The final unit distance of the last segment of the embedded 

edge is effectively replaced by the last type-3 point in the construct. Figure 4.8 shows 



52 

the edge replacement for an edge between two vertex replacement points 3 units apart 

in the scaled embedding. 

r. ^ 

V 1     \V    T~J                 ^*^" y 
Figure 4.8: Complete edge replacement between vertex replacement points v and w, 

3 units apart in the scaled embedding. 

As figure 4.8 and figure 4.7 show, the combination of positions and ranges require 

the scaling factor of 3. Each type-3 point in the edge replacement, as shown in 

figure 4.9, will have the same color as vertex replacement point v, in a distance-2 

3-coloring of the resulting PPGD2. 

Figure 4.9: 3-coloring of vertex replacement point, v, and an edge replacement start- 
ing at that point. The type-1 and type-3 points are the same color. 

Each edge replacement has the property that the resulting 2-dimensional point 

graph has an arc pattern similar to the one shown in figure 4.10. 

Figure 4.10: Directed graph arc pattern introduced by edge replacement. 



53 

To show that this is a viable replacement process two properties must be main- 

tained. First it must be possible to make a "bend" in the edge without changing the 

arc pattern shown in figure 4.10 (recall Biedl and Kant showed each edge replacement 

will have at most two bends). A "bend" in the embedded edge is a 90° turn, a change 

from vertical to horizontal or horizontal to vertical trace. 

Figure 4.11: An edge construct with a 90 degree bend, showing that such bends are 
possible without causing interference 

Due to the scaling factor of 3, bends will occur at multiples of 3 units from either 

the starting vertex replacement point for the edge or from the last bend in the edge. 

For diagramming simplicity this property was violated in figure 4.11. 

The second property is that the edge constructs must allow a vertex, v from G to 

have four non-interfering edge replacements. Figure 4.12 shows one such node. Each 

type-3 edge replacement point, labeled v', will have the same color as vertex v in a 

distance-2 3-coloring of the generated instance of PPGD2. 

Each vertex replacement point is visited in a breadth first order and each edge 

not yet replaced, is replaced as described above. This process continues until all 

type-1 vertices (and therefore all v £ V from the original graph G) have been visited. 

For each embedded edge with embedded segments of total length s, there are 3s — 1 

points added by the construction process. Let m be the maximum length of any edge 
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Figure 4.12: The construction for a vertex, v, of degree 4 from the original planar 
graph G. Each vertex, v' has the same color as vertex v in a valid distance-2 3-coloring 
of the constructed graph, G'. 

embedding, there are then 0(|V| + 3m|.S|) points in the 2-dimensional point graph 

produced by the process of transforming the problem to an instance of PPGD2. The 

total time complexity to produce the instance of PPGD2 is 0(|V|) (based on the 

linear time algorithm from [8] to produce the embedding, the degree restriction to at 

most 4, and the area requirement results of [57]). 

First show that if G is 3-colorable, PPGD2 is distance-2 3-colorable. As shown by 

the arc representation in figure 4.10, any vertex replacement point combined with its 

edge replacement points is distance-2 3-colorable. Then for any two adjacent nodes, 

v and w in G, we can say without loss of generality that the vertex replacement for 

w will be "adjacent" to a type-3 point of the same color as v. Since this type-3 

point will have only one incoming arc from the vertex replacement point for w, the 

only coloring restriction is that they not have the same color, which is equivalent to 

v and w not having the same color in a distance-1 coloring in the original problem. 

Therefore, if there is a distance-1 3-coloring for the instance G, of planar graph with 

node degree at most 4, the generated instance of PPGD2 is distance-2 3-colorable. 

For the reverse, assume there is a distance-2 3-coloring of the instance of PPGD2. 

This means that for all vertex replacement points, v and w, if v and w have the same 
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color, there is no edge replacement between them. If such an edge replacement existed, 

some type-1 vertex replacement point w, would have a type-3 edge replacement point, 

v', positioned such that the Euclidean distance, d(w,v') < rw, and points w and v' 

would have the same color contradicting our assumption of a distance-2 3-coloring. 

Therefore, PPGD2 is NP-Complete. D 

Distance-1 Coloring of D-Dimensional Point Graphs 

The colorability of D-dimension point graphs for D > 2 is NP-complete as a direct 

result of the NP-completeness of directed coloring for planar point graphs, a subset 

of D-dimension graphs. 

Distance-2 Coloring of 2>-Dimensional Point Graphs 

D-dimensional point graph colorability is NP-complete. This is a direct result of 

the NP-completeness of 2-dimensional point graphs. 

4.2    Algorithm Development 

The complexity results of the previous section indicate that approximation algo- 

rithms will be the most efficient means of determining conflict free schedules. Two 

types of algorithms are developed in this work. The first type depend on the geome- 

try of the problem as determined by the locations of the transceivers in the network. 

The second type rely only on the network connection topology to determine coloring 

order. In all cases the color is greedily assigned . 

4.2.1    Geometric Algorithms 

Distance-2 coloring of linear point graphs can be optimally solved in polynomial 

time. This observation is the basis for the first of the geometric algorithms. The other 

two geometric algorithms partition the area occupied by the transceivers in order to 

determine the order of coloring used. Graph coloring algorithms typically address 

the topology of the graph.   Because point graphs are defined in terms of geometric 
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locations from the problem domain, this information can be used in coloring point 

graphs for which this geometric carried over from the problem domain. The effect of 

geometry on the coloring process has never been explored. These geometric algorithms 

are unique in their approach to the problem of graph coloring. 

Linear Projection 

The first algorithm uses the linear point graph distance-2 directed coloring algo- 

rithm to color a 2-dimensional network. In order to do this a 1-dimensional network 

must be produced. The problem with a non-linear network is determining a good pro- 

jection line for the problem. A good line will induce the fewest number of arcs (edges) 

in the projection. For example, given the network of 4 uniform range transceivers 

shown in figure 4.13, we could color this network with one color (for both distance-1 

and distance-2 colorings). 

Figure 4.13: A simple uniform transceiver network. 

Since information is lost in projecting 2-dimensional information to one dimension, 

any resulting coloring (schedule) may not be optimal (though this will depend on the 

structure of the network being modeled). As shown in figure 4.14, a projection to 

either line A or B will result in a 2-coloring of the graph (for both distance-1 and 

distance-2). A worse selection for projection line would be line C, which is 3-distance- 

1 colorable and 4-distance-2 colorable. 

It is desirable to select the best projection line for the network. The method we 

propose identifies the range of slopes for good projection lines for each pair of points 

and selects the slope which induces the fewest non-existent communication links. For 
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B 

Figure 4.14: Projection lines for the network in figure 4.13 

each pair of points in the plane, u and v, there is a Euclidean distance, d(u,v), given 

by the formula, yj(xu - xv)2 + (yu - Vv)2- Each point also has an associated range, 

ru and rv. If d(u,v) is less than or equal to both ru and r„, then the choice of slope 

based on this pair of points will not affect the number of colors (partitions) used in 

coloring the linear projection of the network. The focus must then be on pairs of 

points for which d(u,v) is greater than either or both ru and rv. 

Given two such points u and v, and their ranges ru and rv, first determine what 

range of slopes maintains the distance d(u,v) above either or both ru and rv. For exam- 

ple consider figure 4.15. Transceiver u is at location xu, yu with range ru and point v is 

at xv, yv with range rv. The distance between these points is ^(xu - xv)
2 + (yu -yv)

2- 

The original angle between the line between the points u and v and the coordinate 

system x-axis is found using the following formula: 

' yv - yu \ 
i? (u,u) tan' 

\ \Xu Xy\J 

The projection line slope must be close to this slope in order to keep the inequality 

d(u, v) > ru or d(u, v) > rv true. The range of possible slopes which do not induce a 
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(b) 

Figure 4.15: Determining good projection slopes for two points in the plane. 

new communication link are found in the following way. 

Define an angle of variance, A, between the existing slope of the line between the 

points and the projection line. This angle expresses limits on the difference between 

the original angle i?(lii„) and the angle of the projection line. For any pair of non- 

communicating transceivers two angles are defined by the following equations: 

AUv = cos'1      " 
d(u,v) 

to maintain the distance relative to transceiver u; and 

1 iii 

A, cos 
d(u,v) 

for transceiver v.    The slopes which do not induce new communication links are 

defined by the equations: i?(Ui„) ± A„K and i?^ ± A„u. 

Figure 4.15(c) shows an example of the range of possible slopes by highlighting an 

arc of a circle which corresponds to the tangent points of lines of the correct slope with 

respect to transceiver u. Once all the slopes have been identified, the slope of the 

projection line can be selected to minimize the number of induced communication 

links. It should be noted that it is only necessary to consider angles within one 

hemisphere, as angles in the opposing hemisphere will result in the same projection 

line. 

As shown in figure 4.16, if the projection line shares the origin with the coordinate 

system, the location of the projection of a point is easy to determine.  If au is the 
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Figure 4.16: Determining the projection of a point to the projection line. 

angle of line from the origin to the point, and 0 is the angle of the projection line 

selected, the projection line position, pu, of the point with coordinates (xu,yu), is: 

pu = cos(\au - 0|) * yjxl + y\ 

The actual location of the projection line is limited only to the existing plane of the 

coordinate system. While it isn't necessary for the projection line to share the origin 

with the coordinate system, it simplifies the computations necessary to determine the 

position of projection points for the transceivers. 

Once the projection of points is determined, all that is necessary is to create a 

sorted list of left endpoints, right endpoints, and position points. With this list the 

points can be colored using the 1-dimensional algorithm described above to optimally 

color the projection (approximately coloring the planar network). 

The complexity of this algorithm is dominated by the time to find the best slope 

for the projection line. Because the transceivers are compared pairwise in finding this 

slope. The complexity is 0(n2). 

Linear Projection Ordering 

This algorithm partitions the transceivers in the area being colored by their lo- 

cation. As shown in figure 4.17, the transceivers are colored in the order they are 

projected to a line.   The algorithm is analogous to the linear projection algorithm 
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described above, except the nodes are colored in a greedy fashion based their location 

in the projection, and on the interference with other previously colored vertices. Only 

the projections of the point locations are used in ordering the nodes to be colored. 

A 

Projection 
Line 

> 

Figure 4.17: Coloring affect of linear projection ordering. 

In figure 4.17, with the given projection line, the points in with locations in region 

1, will be colored before those in region 2, which in turn will be colored before those in 

region 3. This algorithm uses the same projection line as determined in the previous 

section. The time complexity of this algorithm is also 0(n2). 

Linear Projection Order with Clustering 

This algorithm is a cross between the two previous algorithms. It is similar to the 

first algorithm in that the points are colored in order of the left endpoints. As with the 

linear projection order algorithm, the nodes are colored based on the 2-dimensional 

location and interference. 

Figure 4.18 shows why the term clustering is applied to this algorithm. By using 

the left endpoints to determine coloring order, it is possible to identify interfering 

nodes earlier and to color based on this interference. Each time a position point is 

reached all points whose left endpoints have been reached, but which have not already 
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been colored will be colored. 

Figure 4.18: Clustering caused by using left endpoints in linear projection ordering. 

As shown, nodes 1,5,6,7,and 8 will all be colored before coloring nodes 2, 3, and 

4. This approach identifies secondary interference between nodes earlier, and though 

it is greedy, selects colors with some connection information in addition to strictly 

geometric information. 

4.2.2    Topological Algorithms 

The alternative algorithms developed return to the more traditional approach of 

coloring the points based on the interconnection topology. Each algorithm uses a 

heuristic to determine the order in which the transceivers will be colored, and uses a 

greedy algorithm once this order has been determined. 

Greedy Matrix: A Random Algorithm 

The first topological algorithm orders the transceivers according to their identi- 

fication number. Since the data used in the test cases is randomly generated, this 

algorithm is essentially a random order greedy coloring algorithm. The name "Greedy 

Matrix" is derived from the use of a distance-2 adjacency matrix.  For this matrix, 
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adjacency is defined in the following way: Nodes u and v are said to be adjacent if 

d(u,v) < ru, d(v,u) < rv, or 3w such that both d{u,w) < ru and d(v,w) < rv. 

The time complexity of this algorithm is 0(n3) due to the complexity of construct- 

ing the distance-2 adjacency matrix. If this matrix is given, the complexity reduces 

to 0{n2). 

Breadth First Ordering 

Several approaches to a breadth first ordering of the transceivers are possible. In 

particular, the selection of the starting node, and the ordering of the adjacent nodes 

will affect the results of the greedy coloring. The approach selected in this work is to 

use the maximum degree node as the starting node. The adjacent nodes of this node 

are then added to the list of nodes to be colored, followed by their adjacent nodes, 

and so on, until all the nodes have been added to the list. Finally, any unconnected 

nodes are added to the list of nodes to color. Once this ordering is determined a 

greedy algorithm employing the distance-2 adjacency matrix described above is used 

to assign colors to the nodes in the order they appear in the breadth first list. This 

method of coloring was selected for its simplicity. 

The time complexity for this algorithm is 0(n2) if a distance-2 adjacency matrix, 

as described above, is given. If the distance-2 matrix must be constructed, the 

algorithm is 0(n3). 

Depth First Ordering 

Just as with the breadth first algorithm, this is a simple algorithm which could 

have been implemented in several different ways. The method selected is the most 

straight forward. The transceiver with the maximum degree is selected as the start- 

ing transceiver. The adjacent transceiver with the maximum degree is next in the 

ordering. The other transceivers are placed in the list in a manner similar to the 

depth first traversal of a tree. 

The time complexity for this algorithm is 0(n2) if a distance-2 adjacency matrix, 

as described above, is given.    If the distance-2 matrix must be constructed, the 
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algorithm is 0(n3). 

Topological Algorithm #1 

This algorithm is a combination of a maximum degree first and a breadth first al- 

gorithm. If the network is viewed as a topological map, the "elevation" of a transceiver 

in the map is directly related to its degree relative to the other transceivers in the 

network. This algorithm first colors the highest degree point and all points adjacent 

to it. The highest degree point of all remaining, uncolored points is colored next, 

followed by its adjacent points. This process continues until all points have been 

colored. This has the effect of coloring densely connected areas before coloring less 

densely connected areas. It is called a topological algorithm due to the analogy to a 

topological map in that all points adjacent to a high degree point describe something 

similar to an isobar on a topological map. 

The time complexity for this algorithm is 0(n2) if a distance-2 adjacency matrix, 

as described above, is given. If the distance-2 matrix must be constructed, the 

algorithm is 0(n3). 

Topological Algorithm #2 

This second algorithm is similar to the first in that it implicitly creates a topologi- 

cal map based on transceiver interconnections. However, rather than starting with the 

maximum degree node, nodes are selected in a "minimum degree last" order. This is 

accomplished by creating a list ordered as described above except using the minimum 

degree nodes. This list is then used in reverse order to color the transceivers. This 

methodology is coincides with one of the traditional algorithms used for comparison 

purposes. 

The time complexity of this algorithm is the same as the first topological algo- 

rithm. The overall effect of this algorithm is to change the topological representation 

by changing the "isobars" due to the minimum degree last ordering. 
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Topological Algorithm #3 

As with the other topological algorithm, this algorithm is based on the com- 

bination of one of the traditional algorithms with a breadth first approach. The 

transceivers are ordered by distance-2 minimum degree last ordering. As with the 

second topological algorithm, the nodes are ordered by selecting the minimum de- 

gree transceiver first (in this case the distance-2 degree) along with its adjacent 

transceivers. Once the ordering is determined, the order of the list is reversed before 

a greedy coloring algorithm is used. 

The time complexity for this algorithm is 0(n2) if a distance-2 adjacency matrix, 

as described above, is given. If the distance-2 matrix must be constructed, the 

algorithm is 0(n3). 

Topological Algorithm #4 

The final topological algorithm is included for completeness. The transceivers are 

selected by selecting the minimum degree transceiver first, followed by its adjacent 

transceivers. In a manner similar to the other topological algorithms, this algorithm 

creates an implicit topological map. This algorithm differs from the other three 

algorithms in that it colors in what could be viewed as a "bottom up" manner. 

The time complexity for this algorithm is 0(n2) if a distance-2 adjacency matrix, 

as described above, is given. If the distance-2 matrix must be constructed, the 

algorithm is 0(n3). 

Static Maximum Degree First 

The static maximum degree first algorithm determines the degree of all nodes in 

the network and sorts them according to this degree. The term static refers to the 

fact that the degree of the nodes are determined before the transceivers are ordered. 

In all the other algorithms developed in this work, the degree of all the nodes are 

determined before each selection is made. Once the selection is made the degrees of 

the nodes in the other cases are recalculated. That is not the case here. It has the 

effect of reducing the multiplicative constant for the time complexity. 
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The time complexity for this algorithm is 0(n2) if a distance-2 adjacency matrix, 

as described above, is given. If the distance-2 matrix must be constructed, the 

algorithm is 0(n3). 

4.3     Algorithm Comparison 

This section compares the relative performance of the algorithms described in the 

previous section with each other, and with traditional distance-2 coloring algorithms. 

The algorithms are used to color networks of various densities. All the networks are 

defined for non-uniform transceivers. Four traditional algorithms are used in the 

comparison. 

4.3.1    Description of Traditional Algorithms 

Four traditional algorithms were modified to perform directed distance-2 coloring 

(source code for undirected versions of these algorithms was graciously provided by 

Subramanian Ramanathan [48]). The algorithms all assign the first available color to 

each ordered transceiver. The first of the algorithms randomly selects a transceiver to 

color from among all those not yet colored. This is essentially the same as the "Greedy 

Matrix" algorithm described above. Any performance variations in the performance 

of these two algorithms is due to the specific data set being colored. This algorithm is 

0(n3) in time complexity due to the need to check for distance-2 conflicts in assigning 

a color. 

The second algorithm is a Maximum Degree First algorithm. A transceiver with 

the maximum degree is selected and colored, and the degree of all its adjacent 

transceivers are decreased before the next transceiver is selected to be colored. This 

dynamic determination of the maximum degree differs from the static ordering de- 

scribed earlier. 

The next algorithm is a Minimum Degree Last algorithm. This algorithm produces 

an ordered list of nodes to color by selecting a node with the minimum degree and 

placing it in an ordered list. As with the Maximum Degree First algorithm, the degree 
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of adjacent transceivers are changed as each transceiver selected and placed in the 

list. This list is then colored in reverse order of the node selection. 

The final algorithm is a Distance-2 Minimum Degree Last algorithm. It is a modi- 

fication of the Minimum Degree Last algorithm above. The degree of each transceiver 

is determined by adding the degree of each transceiver and its adjacent transceivers 

(therefore the name "distance-2"). 

All of these algorithms are 0(n3) in time complexity. The complexity is dominated 

by the need to determine distance-2 coloring conflicts for all transceivers. As with 

the algorithms defined in the previous section, if a distance-2 adjacency matrix is 

provided the algorithms would all have a 0(n2) time complexity. 

4.3.2    Experimental Results 

The average performance of each algorithm is compared for a series of 30 randomly 

generated networks. Each network is composed of transceivers located on a 200-by- 

200 grid. The transceivers have variable ranges from 50% to the maximum range 

which appears in the following tables. The estimate of the optimal number of colors 

is obtained by finding the maximum number of incoming communication links to any 

point and adding one to that number. This provides a true lower bound, but may 

be less than the optimal number of colors required. The results of these comparisons 

are shown in tables 4.1, 4.3,and 4.5. 

In each table, the rows labeled "EOp" contain the estimate of the optimal coloring 

as described above. "LP" is the row corresponding to the linear projection algorithm 

developed above. This algorithm treats the linear projection as a linear network and 

uses an algorithm which is optimal for linear networks. "Lpo" and Lpo2" correspond 

to the liner projection ordering and the linear projection order with clustering algo- 

rithms described previously. "Tl" through "T4" contain the results for the respective 

topological algorithms. The greedy matrix algorithm's results appear in the row la- 

beled "GMt". "BF", "DF", and "SMx" represent breadth first, depth first, and static 

maximum degree first, respectively. The results for the four traditional algorithms are 

in "Rnd" for random, "Mxd" for maximum degree first, "Mnd" for minimum degree 
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Table 4.1:  Distance-2 directed vertex coloring algorithm comparison.   Averages for 
100 and 200 transceiver networks in a 200-by-200 grid. 

Alg 

100 transceivers 200 transceivers 

20 30 
Range 

40 50 60 20 30 
Range 

40 50 60 

EOp 6.4 9.6 14.5 18.9 23.1 10.3 16.9 24.2 33.2 44.2 

LP 23.5 32.0 39.8 47.7 53.4 43.7 58.9 75.4 89.9 106.1 

Lpo 6.5 10.4 15.9 21.8 27.8 10.9 19.2 29.4 40.8 53.6 

Lpo2 6.5 10.3 15.3 20.7 25.9 10.7 18.1 27.0 37.0 49.9 

Tl 6.4 10.3 15.4 20.9 26.4 10.8 18.5 27.8 39.0 52.1 

T2 6.8 11.2 17.0 23.2 28.7 11.6 20.4 31.3 43.6 57.1 

T3 6.6 10.5 15.5 21.4 27.1 11.3 19.3 28.4 39.3 52.5 

T4 6.5 9.9 15.0 20.0 24.9 10.6 17.9 26.1 35.8 48.0 

GMt 6.6 10.3 15.8 21.1 26.9 10.8 18.7 28.2 39.3 52.2 

BF 6.4 10.0 14.8 20.0 24.6 10.4 17.5 25.8 35.6 47.3 

DF 6.5 10.1 15.1 20.6 25.4 10.6 18.1 27.0 37.2 49.0 

SMx 6.4 10.1 15.0 20.1 25.1 10.6 18.0 26.8 36.8 47.7 

Rnd 6.5 10.6 15.8 21.3 26.9 11.0 19.1 28.3 39.5 51.8 

Mxd 6.5 10.0 15.1 20.7 25.5 10.6 18.4 27.0 37.4 49.2 

Mnd 7.3 10.8 16.3 20.2 24.8 11.4 18.3 25.7 35.3 47.2 

d2M 7.5 11.0 16.4 20.4 24.9 11.9 18.8 26.7 34.9 46.8 

last, and "d2M" for distance-2 minimum degree last. 

As table 4.2 shows, the average deviation between the optimal coloring and the 

algorithm results vary as the density of the network being colored changes. For 

relatively sparsely connected networks, most the algorithms exhibit comparable per- 

formance. For the specific cases in table 4.2, the best general performer is the breadth 

first algorithm. As the density increases the performance of the minimum degree last 

and distance-2 minimum degree last algorithm's performance improves. 

The results in table 4.1 show the performance of the algorithms on a relatively 

sparsely connected networks. With the exception of the Linear Projection algorithm, 

all of the algorithms produce comparable results on networks of these types. The 

Linear Projection algorithm produces colorings which use substantially more colors 

than the other algorithms. This result is anticipated due to the loss of information 

caused by projecting 2-dimensional information to a 1-dimensional space. 
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Table 4.2:   Average percent deviation between estimate of optimal and algorithn 

performance (100 and 200 node networks). 

i 

Alg 

100 transceivers 200 transceivers 

20 30 
Range 

40 50 60 20 30 
Range 

40 50 60 

LP 274.2 236.3 178.5 154.1 133.7 332.7 251.7 213.7 171.7 141.2 

Lpo 1.8 7.7 10.4 15.6 20.9 6.8 13.5 21.5 23.2 21.7 

Lpo2 1.7 6.8 5.6 9.7 12.5 4.8 7.1 11.4 11.6 13.0 

Tl 1.3 6.7 6.5 10.4 14.9 5.5 9.6 15.2 17.6 18.3 

T2 6.0 17.0 17.8 22.8 25.0 13.8 21.3 29.6 31.7 29.4 

T3 4.3 9.0 7.7 13.4 17.9 10.1 14.6 17.3 18.8 18.9 

T4 2.2 3.2 3.8 6.1 8.0 3.7 6.2 7.9 8.0 8.8 

GMt 4.4 7.2 9.6 11.8 17.2 5.8 11.2 16.6 18.7 18.3 

BF 0.7 3.4 2.2 5.8 6.9 1.5 3.6 6.8 7.4 7.1 

DF 1.9 4.8 4.3 9.0 10.5 3.1 7.3 11.8 12.3 11.1 

SMx 0.7 4.4 3.9 6.2 9.1 2.9 6.7 11.0 11.0 8.2 

Rnd 2.6 10.8 9.4 12.5 16.9 7.5 13.0 16.9 19.4 17.5 

Mxd 1.9 3.9 4.7 9.4 10.6 3.0 9.1 11.5 12.9 11.5 

Mnd 20.8 14.5 13.3 7.1 7.5 11.9 8.4 6.4 6.6 6.9 

d2M 25.0 16.2 14.4 7.8 8.3 18.7 11.7 10.7 5.3 6.0 

Tables 4.3 to 4.6 demonstrate the relative performance of the algorithms as the 

network density increases. The results indicate that certain algorithms are compara- 

ble in performance. 

The Breadth First, Minimum Degree Last, and Distance-2 Minimum Degree Last 

algorithms, on average, produce results closer to optimal than the other algorithms. 

The next group of algorithms contains the Static Maximum Degree First, Topo- 

logical Algorithm #4, Depth First, Linear Projection Ordering with Clustering, and 

Maximum Degree First algorithms. For the most part they exhibit performance which 

decreases in that order, but which is comparable for all network sizes. 

All the remaining algorithms except Linear Projection, fall loosely into a third 

group. They all exhibit coloring performance comparable to a random coloring algo- 

rithm, though the algorithm Topological Algorithm #2 is consistently worse than the 

random algorithm, indicating an approach which is counter productive. 

Finally, Linear Projection is in a class by itself. The number of arcs induced by 
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Table 4.3:  Distance-2 directed vertex colorin 
300 and 400 transceiver networks in a 200-by 

g algorithm comparison.   Averages for 
200 grid. 

Alg 

300 transceivers 400 transceivers 

20 30 

Range 
40 50 60 20 30 

Range 
40 50 60 

EOp 13.3 22.3 34.2 46.7 63.2 16.6 29.0 43.2 61.9 82.1 

LP 62.9 87.4 110.3 133.0 157.8 83.1 115.0 146.3 178.1 209.3 

Lpo 14.8 27.4 42.3 60.3 81.3 18.9 35.4 56.0 80.5 105.6 

Lpo2 14.4 24.7 38.7 53.7 73.2 18.1 32.6 49.0 72.4 95.6 

Tl 14.6 26.1 40.7 58.0 76.0 18.5 34.2 52.9 77.2 99.9 

T2 15.9 28.5 45.1 64.7 88.3 20.5 38.0 58.4 85.6 113.9 

T3 14.9 26.0 40.0 57.1 77.9 19.1 34.6 52.5 76.0 102.7 

T4 14.1 24.3 37.3 52.2 70.7 18.1 32.1 47.9 70.1 91.3 

GMt 14.8 26.5 40.7 57.4 76.9 18.9 34.4 53.3 76.6 100.0 

BF 14.1 23.6 36.5 50.9 69.4 17.7 31.2 46.9 68.3 90.2 

DF 14.2 25.0 38.8 54.6 71.3 18.2 33.2 50.8 71.9 92.9 

SMx 14.1 24.7 38.3 53.6 70.2 17.9 33.0 50.4 71.2 91.8 

Rnd 14.8 26.1 40.7 57.3 76.3 19.0 34.6 53.1 76.9 100.9 

Mxd 14.2 24.7 39.0 54.5 72.5 18.0 32.9 50.2 72.7 94.9 

Mnd 14.5 24.5 36.2 51.2 69.3 18.4 31.2 47.9 68.3 91.2 

d2M 14.8 24.3 36.8 50.8 68.9 18.4 30.5 47.5 67.5 89.8 

projecting the points onto a line have a major impact on the performance of the 

algorithm. This affect decreases as the density of the network increases. In a highly 

connected network, more transceivers have communication links, and therefore fewer 

links are introduced by projecting the transceiver positions to a line. 

As the density of the network increases, the disparity between coloring algorithms 

becomes more apparent. Clearly, if a geometrically based algorithm is to be developed 

to take advantage of the peculiarities of planar-point graphs, it must maintain some of 

the information lost by the Linear Projection algorithm. The relative performance of 

the Breadth First algorithm would seem to suggest that an ordering algorithm which 

takes advantage of network connection topology might perform better. From the 

standpoint of distributed scheduling, this result suggests that any breadth first type 

algorithm can produce a reasonable schedule. For connected networks this implies 

that any transceiver may be assigned the task of producing a schedule, and the 
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Table 4.4:   Average percent deviation between estimate of optimal and algorithm 

performance (300 and 400 node networks). 

Alg 

300 transceivers 400 transceivers 

20 30 
Range 

40 50 60 20 30 
Range 

40 50 60 

LP 378.3 294.2 223.8 185.3 150.6 405.8 299.1 240.5 188.7 155.5 

Lpo 12.0 23.1 23.9 29.1 28.8 14.4 22.9 29.9 30.2 28.8 

Lpo2 8.3 11.1 13.3 14.9 15.9 9.4 12.8 13.5 17.1 16.6 

Tl 10.2 17.4 19.2 24.1 20.5 11.6 18.5 22.8 25.0 21.9 

T2 20.3 27.9 32.1 38.6 39.8 24.1 31.5 35.5 38.6 38.9 

T3 12.3 16.6 17.0 22.1 23.5 15.3 19.9 22.0 23.1 25.3 

T4 6.6 9.1 9.2 11.8 11.9 9.1 10.9 11.0 13.4 11.2 

GMt 11.5 19.0 19.1 23.0 21.8 14.0 19.1 23.8 24.1 21.9 

BF 6.1 5.8 6.6 9.0 9.8 6.5 7.8 8.8 10.5 10.0 

DF 6.8 12.5 13.6 17.1 13.0 10.2 15.2 17.9 16.4 13.3 

SMx 6.4 10.8 12.1 14.8 11.2 7.9 14.5 17.1 15.2 11.9 

Rnd 11.7 17.1 19.3 22.7 20.8 14.8 19.8 23.3 24.5 23.1 

Mxd 6.8 10.9 14.1 16.6 14.8 9.0 14.0 16.6 17.7 15.8 

Mnd 9.5 10.4 6.0 9.8 9.8 11.6 7.7 11.0 10.6 11.2 

d2M 11.6 9.3 7.8 8.8 9.2 11.4 5.7 10.1 9.3 9.5 

resulting schedule will be comparable to a schedule produced by any other transceiver. 

One final issue is of interest with respect to the linear projection algorithm. When 

projecting to a line, the number of additional communication links added using the 

"best" projection line is a concern. As previously stated, the density of the network 

will affect this to a large extent, and the density is a function of the number of nodes, 

the area occupied, and the ranges of the nodes in the network. The actual number 

of additional links was calculated for networks with the same parameters used in the 

test cases above. For the sparsest network parameters above, 100 transceivers on a 

200-by-200 grid, with ranges from 10-20 units, there were on average approximately 

7 times more links in the linear projection than in the 2-dimensional network. For 

the most dense networks, there were roughly 3 times more links in the projection 

than in the original network. 

A comparison of the time complexity of the algorithms reveals that the form of 

the input determines the complexity of these algorithms.   For example, if a linear 
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Table 4.5:  Distance-2 directed vertex coloring algorithm comparison.   Averages for 

500 and 600 transceiver networks in a 200-by-200 grid. 

Alg 

500 transceivers 600 transceivers 

20 30 

Range 
40 50 60 20 30 

Range 
40 50 60 

EOp 19.5 34.7 52.5 74.6 99.9 22.6 39.8 61.3 86.8 121.1 

LP 100.5 143.4 181.8 218.7 258.1 119.2 168.1 216.9 265.1 312.4 

Lpo 23.0 44.2 69.3 100.1 130.7 26.9 51.6 83.5 118.5 157.4 

Lpo2 21.4 39.7 61.0 87.3 118.0 24.9 46.0 71.8 103.1 142.4 

Tl 22.3 41.4 66.7 96.6 124.2 25.8 49.0 79.0 113.1 150.9 

T2 24.2 47.4 73.9 104.8 140.4 29.0 56.2 88.9 127.8 167.9 

T3 22.3 41.7 65.4 93.4 126.1 25.8 49.1 76.9 110.2 153.4 

T4 21.1 38.7 59.5 84.0 112.6 24.9 45.1 68.8 98.6 136.5 

GMt 22.4 42.0 66.0 93.5 123.1 26.1 49.0 78.1 110.2 148.4 

BF 20.9 37.1 58.0 82.7 110.9 24.3 43.8 67.9 97.0 134.5 

DF 21.7 39.8 63.5 88.5 114.6 25.2 47.5 75.2 103.1 137.3 

SMx 20.9 39.4 63.0 88.5 112.6 24.9 47.1 75.3 102.8 136.2 

Rnd 22.3 41.7 66.2 93.9 123.2 26.7 49.4 77.9 110.6 148.4 

Mxd 21.5 39.8 62.8 88.8 116.7 25.1 46.7 74.3 105.7 140.7 

Mnd 21.7 37.3 58.4 83.2 111.1 23.7 43.6 68.6 97.9 134.7 

d2M 21.9 37.4 57.8 82.8 110.1 24.1 43.0 68.0 97.1 133.2 

projection is provided, Linear Projection is O(nlog n), but determination of the best 

projection line is 0(n2).  Linear Projection Order and Linear Projection Order with 

Clustering are both 0(n2) algorithms if given a distance-2 adjacency matrix.   The 

distance-2 adjacency matrix requires 0(n3) time to compute. All algorithms devel- 

oped in this work are dominated by this term.   If such a matrix is provided, the 

developed algorithms are all 0(n2).  The traditional algorithms are all implemented 

as 0(n3) algorithms. 

4.4    Discussion of Results 

The best performing algorithms in our tests are those that address topology by 

focusing on clusters of transceivers. In the case of the Maximum Degree First, Min- 

imum Degree Last, and Distance-2 Minimum Degree Last this clustering is achievec 1 
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Table 4.6:   Average percent deviation between estimate of optimal and algorithm 

performance (500 and 600 node networks). 

Alg 

500 transceivers 600 transceivers 

20 30 
Range 

40 50 60 20 30 
Range 

40 50 60 

LP 417.9 315.6 247.0 194.1 158.8 432.7 323.9 254.3 205.9 158.3 

Lpo 18.3 27.5 32.1 34.3 31.0 19.9 30.0 36.3 36.7 30.0 

Lpo2 10.0 14.4 16.1 17.0 18.1 10.5 15.8 17.2 18.9 17.7 

Tl 14.6 19.6 27.1 29.7 24.5 14.4 23.5 29.0 30.5 24.7 

T2 24.5 36.8 40.9 40.6 40.7 28.8 41.3 44.9 47.4 38.7 

T3 14.5 20.4 24.6 25.4 26.3 14.7 23.7 25.5 27.2 26.8 

T4 8.4 11.5 13.4 12.6 12.8 10.3 13.4 12.4 13.7 12.7 

GMt 15.0 21.4 25.9 25.5 23.4 16.1 23.5 27.4 27.2 22.7 

BF 7.3 7.1 10.5 10.9 11.1 8.0 10.4 10.9 11.9 11.1 

DF 11.2 15.2 21.2 18.8 14.8 12.0 19.7 22.8 18.9 13.4 

SMx 7.1 13.9 20.2 18.8 12.8 10.8 18.7 23.0 18.6 12.5 

Rnd 14.6 20.5 26.1 25.9 23.4 18.4 24.3 27.3 27.6 22.7 

Mxd 10.5 14.8 19.8 19.1 17.0 11.4 17.6 21.3 21.9 16.3 

Mnd 11.4 7.6 11.2 11.6 11.3 5.1 9.8 12.1 13.0 11.3 

d2M 12.8 7.9 10.3 11.1 10.3 7.0 8.3 11.1 12.1 10.1 

by coloring highly connected nodes first. For the Breadth First algorithm, clustering 

is the result of considering a transceiver in conjunction with its neighbors. 

This clustering of transceivers is most apparent in the performance of the Linear 

Projection Ordering with Clustering. This algorithm consistently requires fewer colors 

than the traditional Maximum Degree First algorithm. 

There is no single approximation algorithm which requires fewer colors in all cases. 

This is due to two factors. First, the use of a greedy algorithm means that once a 

conflict is discovered an additional color is used rather than attempting to avoid 

the conflict by reassigning the colors already used. The second factor is the relative 

simplicity of the heuristics used in the coloring algorithms. Clearly more work must 

be done to understand the relationship between the interconnections in a graph and 

the number of colors required to color it. 



Chapter 5 

Link Scheduling 

This chapter examines link scheduling of radio networks. The first section dis- 

cusses the complexity of link scheduling. The next section discusses the algorithms 

developed for prn-coloring as part of this work. The performance of these algorithms 

is then compared to the performance of established prn-coloring algorithms. The 

final section analyzes the results obtained in the previous sections of the chapter. 

At this point it is appropriate to expand the discussion provided in chapter 2 re- 

garding the reason why prn-coloring is a topic of discussion in radio network schedul- 

ing. Historically, broadcast scheduling was the mechanism used in scheduling trans- 

ceivers in radio networks. For voice communication between adjacent transceivers, 

broadcast scheduling is still the primary mechanism. With the advent of multi-hop 

radio networks, it became possible to send messages to non-local transceivers by rout- 

ing the message between transceivers lying on a path from the source of the message 

to the receiver. 

As messages are sent through multi-hop networks, the information is decomposed 

into small packets of information which are assembled at the receiving transceiver. 

This process permits each packet to take a route which is independent of the route 

of the other packets in the message. In the most general case, each transceiver along 

the route of the packet must determine whether a received packet is intended for it 

or not. If the packet is intended for this transceiver it must be combined with other 

packets, if necessary, and the message must be extracted. If the message is intended 
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for a separate transceiver, the destination must be identified, and the packet must be 

sent either to the destination, or to another intermediate transceiver which will send 

the message in the proper direction. 

If broadcast scheduling were used in this problem, the message would need to 

contain additional information about the route as well as the final destination. In 

addition, broadcast scheduling would have the tendency to limit the number of packets 

in the network at any given time. To reduce the amount of overhead associated 

with each packet and to potentially allow more packets concurrently in the network, 

the transceivers are scheduled in a pairwise fashion. Any packet received during a 

scheduled time slot must be processed, and the receiving transceiver can use local 

routing information to determine which other transceiver to forward the packet to, 

should that be necessary. 

Figure 5.1 shows how this can allow more packets to be simultaneously routed 

through the network. In figure 5.1(a), two adjacent transceivers can receive pack- 

ets during the same slot in the schedule. Likewise, though they are adjacent, fig- 

ure 5.1(b) shows that if there are no transceivers which can receive from two adjacent 

transceivers, they can send packets during the same schedule slot. 

(a) (b) 

Figure 5.1: Non-conflicting schedule slots in packet radio network link scheduling. 

As discussed in chapter 2, the interference definition will depend on the capabil- 
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ities of the network being scheduled. However, for the simplest transceivers using 

TDMA, the definition of interference will be consistent with the one previously de- 

fined. Figure 5.2 shows the conditions under which two links conflict. 

(d) (e) 

Figure 5.2: Conditions where two links (a,b) and (c,d) conflict. 

The formal definition of prn-coloring is given on page 15, and is restated here for 

convenience. 

Given a graph G = (V,A), a prn-coloring of the graph is a mapping 
{$ : (a, b) e A ->• Af\</>(a, b) = <f>(c, d)t$ a±b±c±d and (a, of), (c, b) £ 

A}. 
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5.1     Complexity of PRN-Coloring Point Graphs 

Edge coloring of a graph consists of coloring the edges of the graph such that no 

two adjacent edges have the same color (here adjacency means the edges are incident 

to a common vertex). By Vizing's theorem, the number of colors needed to edge color 

graph is either p or p + 1, where p is the maximum vertex degree. Holyer showed that 

determining whether a graph is p edge colorable is NP-complete [32]. 

A closely related problem in radio networks was investigated by Arikan [1]. This 

work shows that finding a minimum schedule satisfying link traffic demands is solvable 

using integer linear programming and is also NP-complete. As Ramanathan points 

out, the problem of prn-scheduling (as described in chapter 2) is a special case of the 

problem discussed by Arikan [48]. As such the NP-completeness of prn-scheduling is 

not necessarily a result of Arikan's work. 

For complementary graphs, [21] showed &-prn-coloring can be solved in polyno- 

mial time for k < 5.   They also show the problem is NP-complete for all even k 

> 6. 

Ramanathan references a proof of the NP-completeness of ß-prn-coloring arbi- 

trary directed graphs for k > 3 [48]. While this proof is not provided, he shows that 

for k< 3, prn-coloring of arbitrary graphs is solvable in polynomial time. In addi- 

tion, [48, 49] contain a proof of the NP-completeness of 7-prn-colorability of planar 

graphs. 

While these results are not directly applicable to point graphs, the proof constructs 

used can be adapted for use in proving 7-prn-colorability of planar point graphs is 

NP-complete. This proof will not be provided here since it is a direct application of 

the methods used in the previous proof. 

The complexity of linear point graph prn-colorabililty is an open problem. The 

complexity of planar graph prn-coloring and the NP-completeness of edge color- 

ing [32] give hints to the complexity of this problem. Ramanathan shows that trees 

and ring networks can be optimally colored in polynomial time, but it can easily be 

shown that linear point graphs are neither trees nor rings. The conjecture that linear 

point graph prn-coloring is NP-complete is stated here without further comment. 
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Approximate prn-coloring of linear point graphs can be accomplished in polyno- 

mial time. The algorithm described below produces an approximate prn-coloring for 

linear point graphs. In this algorithm, a list of available colors is maintained for each 

transceiver. This list is logically kept as four lists. When a color removed from the 

list of colors available for a point, it is identified as being used as a color for an in- 

coming arc, an outgoing arc, an incoming secondary interference color, or an outgoing 

secondary interference color. Figure 5.3 shows the four conditions where a color may 

not be used as the color for an arc (k,i). 

k *> ^ »i 
or or 

S J^ S *' 
(b) 

k i 
■ *fe 

/ 

(d) 

'/ 

Figure 5.3:   The four local conditions where a color may be unavailable for use in 

coloring an arc (k,i). 

These conditions must be checked in the algorithm. Names are given to these 

conditions in the algorithm. IN corresponds to the condition shown in figure 5.3(a). 

OUT is used to represent figure 5.3(b). SOUT is the name for the condition in 

figure 5.3(c), and SIN is used for figure 5.3(d). For notational purposes, NOTIN[i,j] 

is true if j is not used as an incoming arc color. The name NOTIN[i,j] means "for 

node i, j is not an incoming arc color." Similar notation is used for the other three 

conditions. 
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for i = 1 to N do: 
for j = 1 to iV2 do: 

NOTIN[i,j] f- true 
NOTOUT[i,j] <- true 
NOTSIN[i j] <- true 
NOTSOUT[i,j] *- true 

for i = 1 to N do: 
for k = 1 to N do: 

if (k,i) eA 

while (k, i) not assigned a color 
if NOTIN[k,j] A NOTIN[i,j] A 

NOTOUT[k,j] A NOTOUT[i,j] A 
NOTSOUT[k,j] A NOTSIN[i,j] 

ASGN[k,i] <- j 
NOTIN[i,j] f- false 
NOTOUT[k,j] <- false 
for 1 = 1 to N do: 

if (k,l)e A NOTSINpj] <-false 
if (l,i) £ A NOTSOUT[l,j] <- false 

j <-J + 1 

The points to be colored are assumed to be sorted in order according to their 

positions. This can be assumed without loss of generality, and ensures that if i < j, 

then point i is colored before point j. The time complexity of this algorithm is 0(n4). 

This worst case complexity occurs in the degenerate case of a fully connected graph, 

where each arc must have a unique color. Since n2 arcs must be colored, the "while" 

loop is executed n2/2 times on average, meaning the condition test is executed 0(n4) 

times. Note the inner most for loop is executed only once for each arc, resulting in 

0(n3) executions of the for loop body. 

Expressed in terms of the number of arcs in the graph, the maximum node in- 

degree, pIN, and the number of nodes, n, the time complexity is 0(\A\ * piN * n). 

It is easily verified that this algorithm produces a conflict free prn-coloring. For 

each arc, the color, j, assigned to that arc will not interfere with any previously colored 

arc. The four logical color lists will prevent the edge (k,i) from conflicting with any 

colored arc meeting the conditions shown in figure 5.3. 
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Colors are assigned to arcs only when the endpoint of the arc is encountered. For 

every point i, incoming arc (k,i) is assigned the minimum color which is not used by 

an interfering arc as depicted in figure 5.3. 

For the first point, all incoming arcs must have different colors. For i = 1, the 

algorithm colors the incoming arcs using a number of colors equal to the in-degree of 

point 1. This is shown in figure 5.4(a) and (c). 

< "^- 

(a) 

< 

(c) 

m 

m 

(d) 

Figure 5.4: Edge coloring restrictions in coloring nodes 1 and 2. (a) all m links to 
node 1 must have different colors from each other, (b) as node 2's links are colored, 
all n links must be different from the m links to earlier nodes. This is true whether 
or not node 2 has a link to node 1, as shown in parts (c) and (d). 

For i = 2, all links must have a different color from incoming arcs to point 1. This 

is shown in figure 5.4(b) and (d).   Since node 2 is in range of the m links to point 

1 it must be able to differentiate between its incoming links and those to point 1. 

Therefore none of the colors assigned to the n incoming links to point 2 can have the 

same color as any of the m links to point 1. Similarly, any links between points 1 and 

2 cannot be the same as any of the m + n colors used to color links (k,l) or (k,2) for 
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k > 2. 

As figure 5.5 shows the same conditions hold true for all points in the linear point 

graph. When coloring any point, i + 1, a total ofm + n+p + q colors must be used. 

<L 
m 

K£ 
i+1 

(a) 

C 
m 

^- 

i+1 

(c) 

<± 

-iv 

(b) 

m 

<±«<^n 
i+1 

e m 

i+1 

(d) 

Figure 5.5: Edge coloring restrictions for coloring node i + 1 in a linear point graph. 

This algorithm can be shown to be non-optimal. The restriction to a single 

dimension makes a proof method similar to a proof for planar point graphs unlikely. 

Prn-coloring of D-dimension point graphs for D > 2 is a direct result of the NP- 

completeness of planar point graph 7-prn-colorability. The &-prn-colorability of all 

point graphs is an open problem for 3 < k < 7. 

5.2    Algorithm Development 

Ramanathan has shown that it unlikely there exists a good approximation al- 

gorithm for prn-coloring a graph (where "good" refers to a performance bound of 

0(1), a constant time optimal for the number of colors used) [48].  In practice, the 
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performance of approximation algorithms for prn-coloring of planar point graphs is a 

concern. In this section some prn-coloring algorithms are developed to approximate 

the optimal solution to prn-coloring. As in chapter 4, to general approaches are taken 

in algorithm development. A geometric algorithm is developed to exploit the simplic- 

ity of linear point graph network coloring. Topological algorithms are also developed 

which rely on the network interconnections rather than the geometric locations of the 

points in the network. 

5.2.1 Geometric Algorithm 

The geometric algorithm developed for prn-coloring is based on the greedy al- 

gorithm described previously for linear point graph prn-coloring. The points in the 

2-dimensional space are projected onto a linear network and the order determined 

by the projection is used in coloring the network. This will usually not result in an 

optimal solution. Just as with a linear point graph, the colors are assigned greedily 

to the incoming arcs for each point. However, two links which could be assigned the 

same color, may be assigned different colors as the associated points are independently 

colored in the order of the projection. These two arcs may not be independent, and 

could interfere with a third arc when it is colored because of secondary interference. 

The time complexity for this algorithm is dominated by the time to maintain the 

four logical coloring lists, and is 0(n4) 

5.2.2 Topological Algorithms 

Three topological algorithms are developed for this work. Based on the topological 

results of distance-2 coloring, two breadth first and one depth first algorithm were 

developed. These were selected for their simplicity, and the connected nature of the 

arcs being colored. As in the linear point graph algorithm described previously, all 

uncolored incoming arcs are colored as each vertex is visited in the topological order. 

The polynomial time algorithm for coloring linear networks is used in assigning prn- 

colors once the order of of the vertices is determined. 
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The breadth first algorithm starts by coloring all the incoming edges to the max- 

imum degree node in the network. After the maximum degree node has all of its 

incoming edges colored, the adjacent nodes are visited in random order. The measure 

of the node degree is based on both incoming and outgoing edges. The time com- 

plexity of the algorithm is dominated by the complexity of coloring once the ordering 

is determined. The linear network algorithm described previously is used to assign 

colors, and this algorithm is 0(n4). 

The next algorithm developed is a depth first algorithm. In this algorithm, the 

maximum degree node is selected as the first node to be visited. This node is then 

removed from degree computations for the remaining nodes, and the maximum degree 

node from among the adjacent nodes is selected to be visited next. This process 

continues, with all unconnected node being added as the last nodes to be visited. 

Once again all incoming arcs are colored as each node is visited. The time complexity 

of this algorithm is also dominated by the linear network coloring algorithm, and is 

OK). 
The final algorithm is a modification of the breadth first algorithm which starts 

with the maximum "in" degree node rather than the maximum degree node. This 

algorithm was developed to determine the importance of the starting node in deter- 

mining the order and subsequent coloring. The linear network coloring algorithm 

dominates the 0(n4) time complexity of this algorithm. 

5.3    Algorithm Comparison 

Three existing coloring algorithms were used in comparing experimental results in 

this work. These algorithms were the outgrowth of the work by Ramanathan [48], and 

were graciously provided as test cases by him. All of the algorithms were executed on 

the same graphs. These test cases were averaged over 20 cases for each combination 

of number of node and maximum node ranges. 

The first algorithm provided is a random prn-coloring algorithm. The nodes are 

selected randomly from among the population of nodes having uncolored arcs. All 

arcs incident to the node being visited are colored. 
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The second algorithm orders the nodes to be visited by finding the maximum 

cliques and coloring the arcs incident to nodes in the clique first. At each step, the 

maximum clique is found and uncolored arcs are assigned colors greedily. 

The final algorithm implements the arboreal algorithm described in [48]. The 

graph is decomposed into in-oriented and out-oriented forests, and an optimal tree 

prn-coloring algorithm is used to color the decompositions. For further information 

on this algorithm the reader is referred to [48]. This algorithm has a performance 

bound of 0(®p), where 0 is defined as the thickness of the graph and p is defined 

as the maximum vertex degree of the graph. Time complexity for this algorithm is 

0(n3 logn) (given more information about the graph the time complexity can be ex- 

pressed in terms of the number of edges and nodes in the graph, as 0(|£|*|V| log |V|)). 

The experimental results are summarized in table  5.1. 

Table 5.1: A comparison of prn-colorin g algorithms. 

Link Scheduling Results 
Algorithms 

N Rng EOpt Pfoa Pmcf Prbl LPOr BF DFOr MdBF 

200 

20 22.6 58.1 56.3 56.7 57.5 56.2 55.7 56.1 

30 34.2 144.6 141.1 139.6 145.8 139.6 136.4 137.4 

40 52.5 297.8 296.1 294.5 308.8 288.4 285.1 285.2 

50 99.4 528.8 524.7 516.9 547.7 508.6 502.7 504.3 

60 96.2 820.2 817.0 807.2 862.3 789.2 784.8 772.6 

300 

20 29.1 94.3 95.0 93.9 96.5 93.5 92.2 92.3 

30 49.5 261.9 259.1 257.9 268.6 253.7 249.7 251.0 

40 85.2 551.7 545.5 539.6 577.4 531.7 521.6 526.8 

50 111.2 1022.3 1004.4 998.9 1088.7 978.0 967.8 963.3 

60 150.4 1710.6 1722.4 1691.3 1835.7 1622.1 1647.7 1624.6 

400 

20 36.2 140.6 136.9 138.9 142.4 137.2 134.6 135.9 

30 62.5 390.9 381.5 382.1 403.9 380.5 369.2 374.3 

40 111.2 849.3 839.1 825.1 894.1 821.0 794.8 795.0 

50 144.4 1662.3 1650.2 1624.8 1764.3 1591.2 1581.6 1570.6 

60 193.1 2754.4 2757.1 2691.8 2996.8 2670.5 2663.1 2622.7 

500 

20 45.2 195.4 194.1 193.1 201.1 190.6 187.2 188.1 

30 74.2 531.2 530.2 531.0 547.9 518.7 509.4 512.5 

40 146.0 1169.8 1158.3 1142.0 1210.2 1112.4 1100.4 1084.9 

50 175.7 2390.1 2407.6 2350.1 2588.6 2323.8 2298.0 2299.0 

60 238.6 3997.0 4078.1 3906.6 4357.0 3746.7 4076.0 3777.7 
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The column labels correspond to the algorithm used. "Eopt" contains a very 

gross estimate of the optimal number of colors needed to prn-color the network. 

"Pfoa" is the random algorithm which assigns the first available color to an arc. 

"Pmcf" contains the results for the maximum clique first algorithm. The last of the 

traditional algorithms is represented by column "Prbl" which contains the results of 

the arboreal algorithm developed by Ramanathan. "LPOr" contains the results of 

the linear projection ordering of the vertices. "BF" and "MdBF" contain the results 

of the breadth first algorithms, with "MdBF" representing the maximum in-degree 

algorithm. Finally, "DFOr" contains the results of the depth first ordering algorithm. 

5.4    Discussion of Results 

An examination of the results contained in table 5.1 shows that the depth first and 

breadth first algorithms consistently outperform the more complex maximum clique, 

arboreal, and linear projection ordering algorithms. One reason for this is that these 

approaches carry dependency and conflict information each time the incoming links to 

a node are colored. By following graph links in the coloring algorithm a larger number 

of conflicting colors is discovered at each step of the algorithm. This is particularly 

true of early identification of secondary conflicts. 

The results indicate that linear projection ordering is actually worse than a ran- 

dom order coloring of the nodes. This is due to the nature of the greedy coloring 

algorithm used as the basis of this method. As a set of multi-dimensional points are 

ordered along a single projection line the single dimension information indicates a 

measure of "nearness" between adjacent points. Thus adjacency, while not indicative 

of primary interference, makes secondary interference more likely to occur between 

the points. The independent coloring of links which cause secondary interference 

increases the inefficiency of the greedy algorithm. Links which could have the same 

color, but interfere in the coloring of other links, are more likely to have different col- 

ors since the interference is not considered when the links are independently colored. 

If some dependence or conflict information was available, as in the depth first and 

breadth first algorithms, they would be more likely to have the same color.   Linear 
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projection ordering increases the occurrence of this type of situation by collapsing 

multiple dimensions into a single dimension. 

The depth first and breadth first algorithms outperform the arboreal algorithm 

for the same reason. By decomposing the graphs into multiple in and out oriented 

forests, the dependency and conflict information imposed by the graph links is lost 

when coloring the decompositions independently. Just as with the linear projection 

ordering algorithm, this delay reduces the efficiency of the greedy algorithm used. 

Single algorithm results are somewhat unpredictable based on the test cases used. 

For example, while producing the best average results on most test cases, the depth 

first algorithm had an average number of colors nearly 9% worse than breadth first 

for the densest (most highly connected) graph. A possible reason for this is that 

as the density of the graph increases the number of cliques in the graph increases, 

making a breadth first algorithm less likely to independently color links which exhibit 

a secondary conflict as described above. 

In conclusion, a depth first or breadth first ordering of the points in the graph is 

empirically better than a more complex approach in prn-coloring of multi-dimension 

point graphs. 



Chapter 6 

Distributed Scheduling 

This chapter discusses the development of distributed scheduling algorithms. As 

shown in previous chapters, the problems of broadcast and link scheduling of point 

graphs are both NP-complete. This is the impetus for using approximation algo- 

rithms in determining schedules. As with other computationally intensive problems, 

a desirable approach is to increase the processor power applied to the problem. This 

is one of the chief reasons for examining distributed scheduling algorithms. By dis- 

tributing the work of determining a schedule, more computation can be done per 

unit time. This added computation has a cost in terms of the need to coordinate the 

activities of the processors working on the problem. 

A second reason for distributing the scheduling process is that the network itself 

is spatially distributed. It is this distribution which makes it possible to share the 

communications medium, and the sharing which makes scheduling necessary. If the 

schedule is determined in a centralized location it becomes necessary to distribute the 

schedule. However, if the schedule can be determined locally, no such distribution is 

necessary. 

Another reason for distributing the computations required to perform scheduling 

arises in mobile radio networks. As the transceivers within the network move, the 

interconnections between them are established or lost due to changes in their rela- 

tive positions. Two transceivers may lose and establish their communications links 

frequently over the course of time. If scheduling were to be controlled by a single, cen- 
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tralized algorithm, the information about transceiver communication links would need 

to be communicated to the central location to determine the new schedule. Another 

reason to distribute the scheduling algorithm is to allow local transceivers to schedule 

themselves based on the interconnections they have. This makes it unnecessary to 

send such information to a central processor. 

A final reason to distribute the scheduling process is to create a more reliable 

system. In a system with a centralized scheduler a transceiver failure at the sched- 

uler causes a network failure. In addition, any transceiver failures during schedule 

distribution can leave portions of the network unscheduled. 

For the rest of this chapter the terms, transceiver, node, and processor will be 

used interchangeably in reference to the network. "Transceiver" will be used primar- 

ily in reference to radio communications. "Processor" will be used when referring to 

the computational agents. "Node" will be used to refer to the combination of pro- 

cessor and transceiver. All network nodes are assumed to have identical processing 

capabilities and to be involved in distributed computations. 

The next section discusses some of the problems associated with distributing the 

scheduling process among the nodes to be scheduled. The second section defines a 

basic set of characteristics for transceivers in the network, and presents an algorithm 

for distributed scheduling for a given set of characteristics. 

6.1    Problems in Distributed Scheduling 

Several authors have investigated the process of scheduling in a distributed envi- 

ronment [3, 54, 51, 13, 20, 34, 50]. In this section the issues and methods associated 

with distributed scheduling are discussed within the context of their work. 

One issue to be raised before discussing "problems" is the problem. What specif- 

ically is being scheduled. As mentioned in chapter 2, the access method and the 

transceiver capabilities determine the characteristics of the schedule to be created. 

Of particular interest is the impact of the access method choice on the definition of 

interference. 

In spread-spectrum networks, transceivers are assigned orthogonal codes in a 



transmitter based, receiver based, pairwise, or hybrid scheme [34]. The choice of 

scheme used determines what types of interference can be tolerated, and therefore 

affects the assignment of codes. Transmitter and receiver based schemes assign codes 

based on the transmitter or receiver sending or receiving a message. Two transceivers 

which have no common transceiver within their range (and which are not within each 

other's range) may have the same code in transmitter based schemes. For receiver 

based code assignments, all receivers within the range of a specific transceiver must 

have different codes. Both of these are equivalent to the distance-2 coloring problem 

described in chapter 3. 

A pairwise code assignment is equivalent to the edge coloring problem. In this 

case no two adjacent arcs can have the same code. This problem differs from the 

link prn^coloring problem from chapters 2 and 5 in that the secondary interference 

shown in figure 1.4 is allowed. This is due to the orthogonal nature of the codes 

assigned [34]. 

The type of schedule to be created will determine what information is needed at 

each network node in order to determine a schedule. Adjacent transceiver information 

is needed regardless of the type of schedule to be created. For transceiver or receiver 

code assignment in spread-spectrum communication, or broadcast scheduling using 

TDMA or FDMA, distance-2 neighbor information is needed. 

6.1.1    Basic Assumptions 

The algorithms and protocols appearing in the literature define a set of assump- 

tions about the nodes in the network. One the biggest issues in network scheduling is 

synchronization. Whether a centralized algorithm or a distributed algorithm is used, 

each node in the network must maintain an accurate global time. This assumption 

is common to all network protocols and algorithms discussed in the literature, and 

is usually not explicitly stated. The timing information can either be transmitted on 

a separate signal or may be transmitted as part of the message [14]. This particular 

issue is beyond the scope of the work in this dissertation, and the interested reader 

is referred to [14] or other texts on data transmission. 
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Probably the next most important assumption concerns the stability of the net- 

work topology. Network topology can change due to several factors. Many algorithms 

depend on a set of stationary transceivers [48, 50, 20], however, mobile transceivers 

are becoming an issue of greater concern in the research [3, 54, 33, 34, 51, 13]. It is 

reasonable to assume that node motion will have a greater impact on the stability of 

the network topology than any other single issue (of course this expectation is limited 

to those networks with mobile transceivers). 

A second issue likely to affect network topology is transceiver failure. Networks 

should be able to exhibit "graceful degradation" in the presence of transceiver failures. 

It is reasonable to expect small failure rates, however the network should be able to 

continue operation when a node fails or when a node is repaired. The return of a 

repaired node and the addition of a new node to a network are similar operations and 

the definition of the communication protocol and scheduling algorithm will determine 

if they are treated differently (a likely difference between these two cases will be 

whether or not message traffic intended for a node is waiting for delivery when a 

node is repaired). 

Another issue affecting the network topology is the range of the transceivers. 

Most previous work has depended on all communication links being bidirectional 

(i.e., modeled by a symmetric graph), implying a uniform range transceiver network. 

Given a set of uniform transceivers, it is likely that bidirectional links cannot be 

maintained [3]. 

A final issue affecting the network topology in the environment in which the net- 

work will operate. Many researchers have assumed the best regarding the environment 

(i.e. that the environment will not affect the topology or operation of the network). 

Because most radio communications rely on line of sight transmission, the geography 

of the surroundings will determine whether two otherwise in range transceivers have 

a communication link. For example, there may be a mountain or a group of buildings 

in the way. Weather is another environmental element which can affect the topology 

of the network by reducing the effective range of the transceivers. 

Another common assumption about the network involves what information each 

transceiver has about network connections at the start of the algorithm. The amount 
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of information can vary from no information to complete connectivity information. 

Complete connectivity is necessary in cases where the distributed algorithm simply 

replicates a centralized scheduler at each node. This degenerate case is attractive 

from the standpoint of the communications needed to distribute the schedule, but 

becomes impractical if the network nodes are mobile. 

At the center of the set of assumptions is the set of capabilities of the nodes. 

The most common assumption is that the node can only do one thing at a time, at 

least with respect to transmitting or receiving a message. For the most part, the 

time to process a message (determine if this node is the destination of the message, 

if not prepare the message for forwarding towards its destination), is assumed to be 

zero. This assumption can be made if message processing can overlap with message 

transmission or reception, and is an artifact of the protocol used. 

The more assumptions made about the network the more clearly a distributed 

algorithm can be defined. The assumptions made can have the effect of simplifying 

the problem. For example, the assumption of loss free communication links, as in 

[48], makes message acknowledgment, retransmission, or other methods of recovery 

unnecessary. On the other hand it is often possible to make the assumption that 

some issues, such as missing message packets, are handled at another level of abstrac- 

tion. Therefore, they need not be considered in a scheduling algorithm or as part of 

the communication protocol (e.g., they may be handled as part of normal message 

processing). In the absence of any assumptions regarding the network few useful 

conclusions can be drawn. In designing a network, the complexity of organizing the 

communications process must be controlled to allow message traffic to be exchanged. 

6.1.2    Network Control Options 

As stated previously, the type of schedule being developed will affect the infor- 

mation required at each node. In addition, the method used to obtain information 

which is not present initially in a node must be considered. Several approaches have 

been used to initialize and control network communications. 

The most common method of controlling node communication prior to the creation 
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of a usable schedule is the use of a token [48, 50, 20, 51]. An alternative to token 

passing is the use of carrier detection to avoid collisions [56]. Unfortunately, carrier 

detection does not prevent message collision due to the hidden terminal problem 

(an out of range transceiver which can transmit to common receivers, secondary 

interference in figure 1.2), so a protocol must be instituted to detect and recover 

from message collisions. Hu offers another alternative called deadlock free orientation 

which allows nodes which have information about their adjacent nodes to exchange 

information without collisions [33, 34]. 

Another issue in controlling the network is how control information is exchanged. 

Two basic alternatives exist. First, a separate control channel can be used to ex- 

change control information. This has the advantage that control messages will not 

interfere with normal message traffic in the network. However, the complexity of the 

nodes must increase to make it possible to communicate on the separate channel. In 

addition, it is necessary to schedule the communications on the control channel. In 

a network with a frequently changing topology, control channel scheduling may be 

either to expensive computationally, or it may be simplified to the point that the 

control channel is poorly utilized (both of which are relevant issues for any schedule). 

The second method exchanging control information is to treat control messages 

as part of the normal message traffic within the network. The only requirement then, 

is to recognize when a control message is received or must be sent. 

Regardless of which method is used to exchange information, each control message 

must contain information necessary to construct a usable schedule. Each node must 

be aware of the nodes it can receive messages from and send messages to, and for 

broadcast or prn-scheduling it must also be aware of the distance-2 neighbors. 

Control messages must be able to provide neighbor information. This is especially 

important in networks where the transceivers are mobile or where the network must 

operate in the presence of failures. As a result each node should have a unique 

identifier. If the maximum number of nodes a network will ever contain, N, is known, 

ln2 N bits will be necessary to represent any identifier. Depending on the format of 

the control messages, neighbor information may be expressed as list of these identifiers 

or as a bit vector of length N [54]. The network design may require N to be a large 
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number. The network designer must decide if a message N bits long is necessary, or 

if the average degree of nodes in the network p, makes a />ln2 N message length more 

practical. 

The other information needed in control messages, is scheduling information. 

Knowing all distance-1 and distance-2 neighbors is sufficient to determine a sched- 

ule at a particular node. However, the schedule must be sent to the other nodes. 

The other nodes will either follow the received schedule or reconcile it with a locally 

determined schedule. As with neighbor information, the method used to encode the 

information must be determined by the network designer, and will not be discussed 

as part of the algorithm design in this dissertation. 

One requirement for the exchange of control information is that every node in the 

network be capable of sending messages to at least one other network node. This 

assumption is not required in the presence of several other assumptions, namely: no 

message loss; every node knows the identity of all adjacent nodes; nodes never fail; 

and nodes are stationary. If messages can be lost, it must be possible to request a 

retransmission of the message. If nodes must discover the identities of adjacent nodes 

every node must be able to notify some other node of its existence. If nodes can 

fail, other nodes must be made aware of the failure and possible return to operation. 

Finally, if nodes are mobile, they must be able to notify at least one other node of the 

new nodes from which they can receive messages, to avoid the secondary interference 

shown in figure 1.2. 

6.2     An Algorithm for Distributed Scheduling 

This section describes the development of a distributed algorithm for determining 

broadcast schedules in a mobile radio network. First the basic assumptions about 

transceiver capabilities are explained. Then a distributed algorithm for a stationary 

network is defined. Finally the algorithm is modified to account for node movement, 

node failure, and the addition of a node to the network. 

As mentioned previously, some set of assumptions about the network must be 

made in order to discuss an algorithm.   For the algorithms in this dissertation a 
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common factor has been the use of point graphs as the model of the system.  This 

model will also be used here without restriction. The topological assumptions for the 

network must account for one direction communication links. 

The assumptions about the network to be scheduled are: 

• Every node has a unique id, assumed to be a positive integer. 

• Every node knows its own identification, the identification of all its adjacent 

nodes, and the lowest identification number in the network. 

• Every node knows the direction of its communication links. 

• All communication links are reliable. 

• The network is strongly connected. 

The first assumption is reasonable. Most hardware manufacturers include some 

form of identification in their products. Node identification ensures that messages 

are sent to the correct destination, and are also necessary to properly route messages 

between non-adjacent nodes. The second assumption can be accomplished by means 

described in various works [3, 54, 34]. A method described in [3] can be used to 

determine the direction of the communication links between nodes. The assumption 

of reliable communications, as stated above, may be made based on the assumptions 

of the level of abstraction which handles message acknowledgment and requests for 

retransmission. Error detection and recovery methods are described in [7]. 

The final assumption regarding a strongly connected network is a reasonable ex- 

pectation for radio networks. A strongly connected network is one where a path 

exists from each node to every other node. In the absence of such an assumption 

there can be nodes in the network which are unable to communicate with some sub- 

set of nodes in the network. This is not a desirable characteristic, and is the reason 

for the assumption. 

A simple centralized greedy algorithm for determining this coloring is the follow- 

ing: 
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Given a graph G=(V,A) 

While there is a node which has not been colored 
select an uncolored node, v 
assign color c(v) <- Non-conflicting-color(G) 

The function Non-conflicting-color(G) returns the first color which does not con- 

flict with any of the node colors already assigned for graph G. If the maximum node 

degree is p, the function requires 0{p2) time to process, and the total algorithm 

completes in 0(\V\p2). The algorithm uses at most 0(p2) colors, and since this is 

distance-2 coloring, at least tt(p + 1) colors. 

In chapter 4 the breadth first algorithm exhibited an average performance which 

makes it a good choice for implementing in a distributed environment. The problem 

is how to ensure that nodes at the same distance from the first node colored do 

not interfere with each other when they communicate. The usual way to prevent 

this interference is to pass a token during the development of the schedule. For a 

stationary network, where the schedule is only determined at network startup, this is 

a satisfactory solution. In situations where the network may need to be rescheduled 

periodically, token passing is wasteful. The algorithms described in the rest of this 

chapter rely on two assumptions about the network. First, each node knows the 

identities of adjacent nodes. As stated above, this is a reasonable assumption at 

startup since several authors have indicated methods of distributing this information 

among the nodes. The second assumption regards the assumption of reliable, loss free 

communication links. The algorithm presented here depends on the ability to detect 

errors due to possible message collisions at the receiving node. An extension of this 

assumption, is that message reception is guaranteed in a finite time. 

The distributed algorithm for a static network is now informally presented. Con- 

sider the network shown in figure 6.1(a). Assume node a is selected as the first node 

to be colored. This node may be selected as the node with the minimum identification 

number in the network. Node a selects a the minimum color available, 1, for itself, 

and assigns colors to each of its adjacent nodes. It then broadcasts this color assign- 

ment to all of its neighbors. These neighbors then have some distance-2 information, 
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(a) (b) 

Figure 6.1: Example networks for distributed coloring algorithm 

The adjacent nodes then add to the received schedule by assigning color to adja- 

cent nodes in the following way. Wait until coloring information has been received 

from all adjacent nodes which are already colored and which have a lower identifica- 

tion color. If the received schedules assign multiple colors to this node, select the first 

non-conflicting color. Based on all received coloring information, assign colors to all 

uncolored adjacent nodes. If two nodes have been assigned conflicting colors, assign 

the first non-conflicting color to one of the nodes. Then broadcast the new coloring 

information to all neighbor nodes. 

After initially processing schedule information, each node participates in the net- 

work, and may receive schedules from its neighbors. If a received schedule is different 

for any previously scheduled nodes, the node will update its own schedule, correcting 

any conflicts between the received schedule and the node's current schedule, and then 

broadcast the updated schedule. If there are no changes, update any link informa- 

tion for adjacent nodes (this accumulates distance-2 information for the node). If all 

adjacent nodes have finished processing, start using the schedule. 

A walk through an example will show how the algorithm works. In figure 6.1(a), 

assume node a is the node with the minimum identification number in the network. 
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Node a assigns color 1 to itself, and colors 2, 3, and 4 to nodes b, c, and d. Thus 

after the first step, node a has created the following coloring message and sent it to 

b, c, and d. 

a b c d 

1 2 3 4 

- in/out in/out out 

The first row contains adjacent node identification, the second contains the color- 

ing, and the third contains link direction information. Node b and c then construct 

their schedules based on the received schedule. Node b makes no changes to the 

schedule, since all adjacent nodes have been colored, but it does change the commu- 

nication link information to reflect its own links, and sends this message to a, and d. 

a b c d 

1 2 3 4 

in/out - in/out - 

Node a will not make changes to its schedule, but records the communication 

information for node b. Node c does make additions to the schedule based on its 

neighbors, and sends the following information to a, e, and f. 

a b c d e f 

1 2 3 4 2 1 

in/out - - in in/out out 

When node a, receives this message, it updates its schedule to reflect the new 

link and coloring information and sends new copies of the schedule to b, c, d. In the 

meantime, node d, which waited for a schedule from node b, updates its schedule by 

coloring adjacent node g. It sends the following message to nodes b, c, and g. 

a b c d g 
1 2 3 4 3 

in in/out out - out 

This process will continue with nodes coloring adjacent nodes, until nodes f and i 

send the following messages to node h: 



97 

from node f from node i 

a b c d e f h a b c d g h i 

1 2 3 4 2 1 4 1 2 3 4 3 2 1 

- - in - in/out - in/out - - - - in/out out — 

one 

Node h must perform two actions depending on the timing of the messages. In 

case, the message from i is received first. Node h will accept color 2 for itself and 

assign the color 3 to node f, and then send node f a message with this information. 

Node f will delay until a scheduling message is received from e before updating local 

schedule information. Node f will then resolve the coloring conflicts between nodes e 

and h, and between node i and itself. First it assigns itself the first non-conflicting 

color, in this case 4, and assigns the first non-conflicting color to either e, or h. In 

this particular example, the color 5 would be assigned to either e, or h. 

In another case, node h receives messages from both nodes f and i before attempt- 

ing to create a schedule. In this case, node f will accept the first non-conflicting color, 

4, from the message received from node f. The conflict between nodes f and i will 

then be resolved either by assigning the color 2 to node i, or assigning 5 to node f. 

A couple of important things to note about this algorithm are that message colli- 

sions are assumed to be handled at some other level of abstraction. This is important 

in understanding the non-deterministic order of messages received at node h in the 

example just discussed. Those nodes which have multiple paths from the starting 

node will receive multiple schedule messages. As seen in the example the message 

order will determine the coloring assignment in the network. However, the schedule 

produced will ultimately be conflict free. As a node receives a schedule message and 

discovers conflict, it changes the schedule and sends the new schedule as a message. 

This schedule traffic continues until no changes are made to the schedule, and all 

scheduled nodes have acknowledged the change. Message acknowledgment is neces- 

sary to ensure termination. The messages described above can include an additional 

row of acknowledgments. The acknowledgment for a node is set when it broadcasts its 

first schedule message, if the only change in the schedule message seen at an adjacent 

node is an acknowledgment, the schedule message should be forwarded, and the local 
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processor will keep track of each node appearing in a schedule message, whether that 

node has acknowledged a schedule by sending its first message. 

In the example given above, node i will receive a correct schedule and begin 

following it when it receives a schedule message with an acknowledgment from node 

h. In a network with stationary transceivers, the network will have a conflict free 

schedule when the schedule no longer changes. All nodes will be aware of the correct 

schedule when the acknowledgment for all nodes in the schedule has been received. 

Because the network is assumed to be strongly connected, each node will eventually 

have all acknowledgments. The acknowledgment portion of the message is similar to 

the use of a token. 

An examination of figure 6.1(b) reveals the same sort of conflict problem arises 

for this network at node f. In both cases the multiple paths from the start node to 

other nodes in the network cause the conflicts. One way to avoid this is to use token 

passing during the development of the algorithm. The difficulty with token passing 

is, in a directed network where symmetry is not guaranteed, a token protocol insuring 

no conflicts may spend large amounts of time passing the token. The approach taken 

in this work is analogous to using multiple tokens by using the acknowledgment 

from adjacent nodes. However, processing of scheduling messages can continue while 

waiting for acknowledgments. 

Each message is assumed to have header information including: 

• source - the identification of the node sending the message 

• schedule - the schedule as depicted above including identifiers, assigned colors, 

and direction of the communication links for the source's adjacent nodes 

• acknowledgment - a flag, as described above, indicating that a node has pro- 

cessed a schedule message 

Without loss of generality, each message can also be assumed to have a destination 

field in the header. The destination for schedule messages may be a special value 

indicating a schedule message to all adjacent nodes. Another possibility is that each 

message will have a "type" field, which indicates whether or not a message is a 



99 

schedule message. There must be other types (at least one), but they are not of 

interest to this algorithm. 

Each node also maintains a list of its neighbors, and the directions of the commu- 

nication links. It also keeps a list of the distance-2 neighbors identified in schedule 

messages received from adjacent nodes. A value is also maintained locally for the 

acknowledgment flag of each node. Finally, each node maintains a queue of messages. 

The following algorithm is executed by each node in the network: 

if the id of this node is the lowest identifier in the network 
select colors for this node and its adjacent nodes 
set the acknowledgment flag for this node 
send the schedule to all adjacent nodes 

repeat 
wait until a message is received 
if the type of the received message is "schedule" 

add message to queue 
if this node has not set its acknowledge flag 

if all nodes scheduled in the first schedule message in the queue, 
which have lower ids and which can transmit to this node 
have their transmitted a schedule 

for each schedule message in the queue 
add missing schedule contents from message to local schedule 
add distance-2 information for source of message 
add acknowledgment flags from the message 

if this node has been assigned multiple colors 
assign first non-conflicting color to this node 
modify schedule to reflect new color 

for each node in schedule 
if the node color conflicts with another node in the schedule 

assign first non-conflicting color to that node 
update schedule before checking the next node 

set acknowledge flag for this node 
send the schedule to all adjacent nodes 

otherwise this node has set acknowledge flag 
add missing schedule contents from message to local schedule 
if this node has been assigned a new color 

assign the new color if it does not conflict otherwise 
assign next higher non-conflicting color 

change local schedule to reflect received schedule and changes 
for each node in schedule 
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if the node color conflicts with another node in the schedule 
assign first non-conflicting color to that node 
update schedule before checking the next node 

if the local schedule or acknowledgment flags have changed 
send the schedule to all adjacent nodes 

otherwise this is not a scheduling message 
Process messages 

continue repeating while the network is operating 

Each node will send a schedule message changing its acknowledgment value ex- 

actly once. The acknowledgment values provide an end-to-end method of acknowl- 

edging the completion of the scheduling process. For stationary networks, the for- 

warding of scheduling messages when acknowledgment flags change allows feedback 

between nodes whose schedules may interfere. For example, in the walk through of 

figure 6.1(a), this forwarding of messages is what guarantees that node i's message 

was received by node h. 

The following is a description of a method for handling mobile network nodes in 

this algorithm. There are two cases when two transceivers enter each others range. 

First, they may already have been distance-2 neighbors. In this case they must 

reconcile any new conflicts due to new distance-2 neighbors. In the second case, they 

may have had no previous connection in the network, and must provide the same 

distance-2 information to determine schedules. The main difference in these two 

cases will be the number of potential conflicts between the nodes. The second case 

is more likely to have conflicts due to the independence of the nodes prior to their 

movement into each other's range. 

For both these cases, define a message type "request-schedule". For this work the 

requesting node sends a copy of it's schedule to the node it has received a new message 

from (i.e., one that is newly adjacent). To reduce the rate of growth of the schedule, 

the node with the minimum identifier is assumed to take precedence in scheduling the 

newly adjacent nodes. When a request-schedule type message is received from a node 

with a smaller identifier, entries in the local schedule are changed to avoid conflicts 

with the schedule received in the request-schedule type message. This precedence is 
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important in the event two nodes both send request-schedule type messages. 

The other condition which must be detectable is when two nodes are no longer 

within range of each other. This situation is similar to node failure. In either case, 

when a message is sent, some level of the network protocol will expect an acknowl- 

edgment. When the acknowledgment is not received within a delay period, the des- 

tination node can be assumed to no longer be within range, or perhaps no longer 

functioning. In these cases a node should remove the node from the local adjacency 

list (assuming of course that there was an incoming link from the node). Connectiv- 

ity information for nodes in the network can be maintained by protocols discussed 

in [3, 54]. 

The mobile network algorithm described below assumes some method for identi- 

fying communication links in the network. Detection of a node moving into range 

can be detected by examining the header information of each received message. If the 

source of the message is not currently in the adjacent node list for the node receiving 

the message, then the source is a newly adjacent node. The schedule slot in which 

the message was received will indicate the color of the node. 

This described algorithm should be part of normal message processing indicated 

in the algorithm above: 

if the id of the message source is new and message type not schedule-request 
determine the color/schedule slot of the source node 
add source node as an adjacent node 
if this node id is less than the id of the source 

if source node conflicts with the local schedule 
assign first non-conflicting color to source node 

send local schedule in schedule-request type message to source 
otherwise if message type is schedule request 

add source node as an adjacent node 
if this node id is less than the source id 

for every node conflict between local and source schedules 
assign non-conflicting color to source node and neighbors 

otherwise source id is less than this node id 
for every node conflict between local and source schedules 

assign non-conflicting color to this node and neighbors 
send new local schedule as schedule message 



102 

For nodes which are no longer within range, the following should be performed 

under conditions indicating a node is no longer within range: 

if node i is no longer in range, remove node i from adjacency list 

When a node is no longer in range, schedule changes are not necessary. If the 

node was removed in error, it will not be discovered until a schedule change occurs. 

One alternative to this method is to use one of the protocols described in [3] to keep 

connectivity information current. The trade off is the cost of control information. If 

the network uses a separate control channel, control messages will not interfere with 

normal message traffic. The algorithms above do not make any assumption regarding 

the use of a control channel. 

The algorithms presented here have not been analyzed with respect to efficiency. 

In a network with frequent connectivity changes, the algorithm will probably prove to 

be very inefficient. The goal of this work was to describe a distributed algorithm which 

can operate in a mobile environment, and which uses some of the results observed in 

centralized algorithms for broadcast scheduling. The topic of distributed scheduling 

is large, and a complete analysis is beyond the scope of this dissertation. 

6.3    Conclusions 

The issues surrounding distributed network scheduling were discussed in this chap- 

ter. A simple distributed algorithm for scheduling a network of stationary nodes was 

presented. This algorithm was evaluated for correctness, though efficiency was not- 

addressed in its evaluation. While most algorithms described in the literature use 

token passing to control development of the schedule, this algorithm uses a breadth 

first approach in developing the schedule. 

Many issues regarding distributed scheduling were discussed prior to developing 

the algorithm to provide a context for the algorithm. However, many of the issues 

raised were not discussed with respect to the developed algorithm. The issues require 

considerations in network protocol and transceiver design, and are outside the scope 

of this dissertation. 
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Distribution of scheduling does not change the NP-completeness of the scheduling 

problem. When the problem is distributed, the information needed to determine the 

schedule also must be distributed. In the presence of mobile network nodes, there is 

a continual need to exchange and update information in order to maintain a conflict 

free schedule. A unique feature of this algorithm is that it is designed to operate in 

network where node communications may not be bi-directional. Several issues which 

should be evaluated for this algorithm include: the amount of control message traffic; 

the propagation of schedules through the network; a bound on the growth of the 

schedule. These are left as directions for future research. 



Chapter 7 

Conclusions and Future Directions 

This chapter presents a synopsis of the research performed for this dissertation. 

The first section summarizes the material presented in this work, highlighting the 

main contributions. The final section presents recommendations for directions to 

explore in future research. 

7.1     Summary and Conclusions 

This work addressed the problem of scheduling communication in radio networks. 

Previous work failed to recognize the uniqueness of the graphs used to model networks. 

This work showed the uniqueness of the graphs produced, the correspondence to 

physical networks, and the complexity of determining schedules for the network. 

Chapter 1 gave a brief introduction to the problem area. Radio communications 

are becoming more common as the twenty-first century approaches. In particular, 

networks of transceivers forming packet radio networks are a continuing topic in re- 

search. The properties of radio communications make interference between transmit- 

ters a problem necessitating scheduling of the transceivers comprising radio networks. 

Two types of network schedule and the types of interference they experience were de- 

fined. In broadcast scheduling each transceiver transmits to all transceivers within its 

range. These broadcasts are scheduled so that primary and secondary broadcast in- 

terference do not occur. In link scheduling, the communications between transceivers 
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are scheduled in a pairwise fashion. Though the definitions of interference differ, 

primary and secondary link interference are not allowed. 

The reason for modeling of radio networks is to capture the pertinent features 

of the networks in order to solve the problem under consideration. In the area of 

network scheduling, graph models combined with graph vertex and edge coloring are 

used to solve the problem. Chapter 2 explores the problem of modeling in general, 

and the specifics of modeling radio networks. 

All graph models start from the same definition of position and range. The result- 

ing graph is identified as a particular type of graph, and this type of graph is the model 

used. Most research has concentrated on modeling using arbitrary graphs, though 

trees and planar graphs have both been proposed as network models. The selection of 

the type of graph used to model the network has usually been outside the interest of 

the researchers, resulting in the selection of arbitrary graphs. The restricted graphs 

are proposed as models due to the existence of polynomial time algorithms for solving 

the graph coloring problems used in determine network schedules. All of these graph 

types are shown to be inaccurate network models. The inaccuracies lead to inefficient 

solutions and possibly erroneous conclusions based on applying characteristics of a 

large problem domain a restricted domain where the characteristics do not apply. 

An accurate model of radio networks, the Point Graph, is defined in chapter 3. 

While defined for N-dimensions, most networks are modeled using the 2-dimensional 

planar point graph. These graphs accurately model radio networks by representing 

the communication links between transceivers. The relationship between this new 

graph type and other graphs is shown. Point graphs are a proper subset of graphs 

and are not equivalent to trees or planar graphs. When restricted to a uniform range, 

point graphs are equivalent to space graphs, which are called unit disk graphs for 

2-dimensional space. Proper identification of the type of graph used to model the 

network, and the accuracy of that model can lead to better solutions either in time 

complexity, nearness to optimality, or both. 

The chapter concludes by showing the graph coloring problem traditionally used 

in solving network scheduling (undirected vertex distance-2 coloring) introduces non- 

existent dependencies between transceivers. An alternative, directed coloring, is de- 
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fined, and evidence is provided to support its use in solving network scheduling prob- 

lems. 

Broadcast scheduling using the new graph model is explored in chapter 4. The 

chapter begins by showing the complexity of solving both traditional coloring and 

directed coloring problems. When restricted to 1-dimension point graphs can be op- 

timally solved in polynomial time. For dimensions greater than one, coloring of point 

graphs is NP-complete. Two types of algorithms are developed to determine network 

schedules. Geometric algorithms are developed to include the position information 

available with point graphs. The geometric algorithms represent an initial attempt 

to understand the relationship between the spatial distribution of network points and 

the operation of greedy coloring algorithms. The time complexity of the geometric 

algorithms was better than the other algorithms tested (O(nlogn) and 0(n2)), but 

they used substantially more colors on average than the other algorithms. The second 

type of algorithm developed uses the interconnection topology of the network rather 

than the locations of the transceivers within the network. The algorithms using these 

heuristics as an ordering mechanism consistently provided better results than most 

other algorithms. The time complexity for these topological algorithms was 0(n2). 

The performance of the developed algorithms is compared to the performance of more 

traditional coloring algorithms which have been modified to solve directed coloring 

problems. The traditional algorithms were all 0(n3) in time complexity. The best of 

the traditional algorithms provided results comparable to the best of the developed 

algorithms. 

The application of point graphs in link scheduling is explored in chapter 5. The 

complexity of prn-coloring is determined for point graphs, and approximate prn- 

coloring algorithms are developed to solve the link scheduling problem. As with 

broadcast scheduling, two types of algorithms were developed. A geometric algorithm 

was developed which ordered the links to be colored by their locations. The other 

algorithms developed in this work were topological algorithms which depended on 

the interconnection links between the vertices. All of the developed algorithms have 

a time complexity of 0(n4). The performance of these algorithms is compared to 

the performance of algorithms proposed in recent research.   The algorithms from 
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recent research had a time complexity of O(n3logn). The topological algorithms 

outperformed all other algorithms in the test cases run. 

Chapter 6 explores the issues associated with distributed scheduling in radio net- 

works. An algorithm for broadcast scheduling in a mobile transceiver environment 

is developed which incorporates the results obtained for centralized scheduling algo- 

rithms. This algorithm is evaluated informally for correctness. Efficiency and time 

complexity of this algorithm were not addressed in this work. 

In conclusion, this work explored the problem of radio network scheduling using 

graph models. It was previously demonstrated that this problem mapped well to 

graph coloring problems which were shown to be NP-complete. The models pre- 

viously used were shown to be inaccurate in their representation of the important 

characteristics of the problem domain, and a new model was defined which accurately 

represented the characteristics important to the problem solution. This new problem 

was also shown to be NP-complete in specific cases, and approximation algorithms 

were developed to solve scheduling using the new model. The main contributions of 

this dissertation include: 

• The Point Graph, a new, more accurate graph model for radio networks is 

defined, after showing that previous models failed to represent the important 

features of radio networks. All network graph models are constructed from the 

same initial information. The identification of the model as a particular graph 

type determines many of the properties of solving coloring for the graph model. 

Previous models were either two restrictive and incapable of representing the 

interconnections of the network, or were not restrictive enough and modeled 

networks with no physical realization. Using an inaccurate model is the equiv- 

alent of solving the wrong problem. This new model is a new type of graph 

which is a superset of unit disk graphs and space graphs, both of which have 

been studied in the literature. This new model is based on the geometry of the 

radio network. An accurate model can lead to better solutions in either the 

time complexity, the closeness to optimality, or both. 

• A new graph coloring problem is defined for application in the area of network 
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scheduling. The inefficiency of traditional graph coloring for undirected graphs 

is explained, and experimentally demonstrated. The new graph problem of 

directed coloring is shown to use significantly fewer (20% less) colors in solving 

the broadcast scheduling problem. It is also shown that directed coloring will 

never require more colors than undirected coloring to color a graph. 

• Complexity results for the new model are equivalent to the problem of network 

scheduling. Previous proofs used inaccurate network models in obtaining the 

complexity results. Therefore, though strongly indicating the complexity of 

network broadcast scheduling, the previous work was not directly applicable to 

radio networks and did not provide any proof of the actual complexity. The 

NP-completeness of distance-1 and distance-2 coloring N-dimensional point 

graphs was proven for N > 2. Optimal polynomial time algorithms were given 

for coloring linear point graphs. 

• The complexity of prn-coloring of networks is shown to be NP-complete for 

point graphs of dimension greater than one. As with broadcast scheduling, 

previous results were applicable to the models used to represent the networks. 

The time complexity of 1-dimensional point graphs is an open problem. 

• Algorithms were developed which addressed the geometry of the network in the 

heuristics used in graph coloring. Since previous models were not specifically 

based on network geometry, this approach to graph coloring had never been 

explored. The specific algorithms developed in this work were based in part on 

the observation that linear point graphs can be optimally colored in O(nlogn) 

time. Planar point graphs were projected to a line and colored as if they were 

linear point graphs. The loss of information in projecting the points was ex- 

pected to produce poor results, but the algorithm for coloring had a 0(n log n) 

time complexity. Two other algorithms used the projection of points to a line 

as a means of ordering the vertices to determine a greedy coloring of the graph. 

More complex heuristics addressing the relative density of points in the net- 

work may prove more useful in ordering the vertices. The time complexity of 
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these algorithms is better than other algorithms, but they produce less efficient 

schedules. 

• Development of realistic experimental models and the comparison of previously 

developed coloring algorithms and heuristics to those developed in this work. 

7.2    Directions for Future Research 

Several issue remain in the application area of network scheduling. 

Point Graphs: These were defined in this work, but only explored in the realm of 

graph coloring. Graph theoreticians now have a new type of graph to con- 

sider. Point graphs are a superset of both unit disk graphs and space graphs 

and there are bound to be some similarities (particularly for symmetric point 

graphs). However, the complete analysis of this class of graphs remains to be 

done. Some specific graph problems which need to be explored include: for- 

bidden subgraph characterizations; the recognition problem for point graphs; 

maximum independent set; and network flow problems. Some forbidden graphs 

were defined in chapter 2, but a complete characterization was not a goal of this 

work. Another issue in graph theory is the graph recognition problem, which 

is one of the areas where forbidden subgraphs are applied. The maximum in- 

dependent set is a problem of interest to network designers as the maximum 

number of transceivers which can transmit at the same time. Network flow prob- 

lems would also be of interest to network designers as a method of determining 

some of the measures of network capacity and throughput. Two graph coloring 

problems remain open. Chapter 4 contained proofs of the NP-completeness of 

distance-2 vertex coloring for non-uniform range point graphs, but no corre- 

sponding proof was provided for uniform range (symmetric) point graphs. In 

particular, symmetric planar point graph ft-colorability for 3 < k < 7 is an open 

problem. Also prn-coloring of linear point graphs is an open problem, though 

it is conjectured that it is NP-complete. 
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Graph Coloring: This research explored geometric algorithms and classical color- 

ing heuristics in developing algorithms to solve the network scheduling problem. 

Further research should be done to determine what combination of topological 

and geometric characteristics is most important in developing heuristics for ap- 

proximate graph coloring algorithms. The use of the locations of points gives 

more information than an adjacency matrix. Can this information be used to 

improve the time complexity or quality of solution of coloring algorithms, or is 

some more traditional idea consistently better at indicating the relative order 

of a node compared to its neighbors. For example, the degree of a given node 

is usually a good indicator of the impact a given node will have on the color- 

ing of the network. It is also clear that degree information alone is insufficient 

in determining the best order to color nodes to achieve near optimal results. 

There is also no theoretical work indicating whether it is possible to determine 

a perfect ordering for the nodes to be colored. It was shown that a linear point 

graph can be optimally colored by proceeding through the vertices from, say, 

the minimum location to the maximum location. This raises the question, is it 

possible to order vertices in multi-dimension point graphs such that a greedy 

coloring algorithm will produce an optimal answer? Or can it be shown that 

there are graphs for which no such ordering can exist? 

Distributed Scheduling: The work on distributed scheduling in this dissertation 

barely scratched the surface of the work which needs to be done. In partic- 

ular, issues such as schedule coordination, node failures, and the addition of 

new nodes must be further explored, and a rigorous theoretical model must be 

developed. This model will permit more intelligent design decisions to be made 

when constructing a network. 

Networks of Mobile Transceivers: A single distributed algorithm was presented 

in this work to address this problem. The changing topology of networks com- 

posed of mobile transceivers makes it necessary to reschedule the network as the 

topology changes. As communication links are formed and lost, the schedule 

will contain slots for links which no longer exist and will not have slots for re- 
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cently formed links. How does this impact the scheduling process? In broadcast 

scheduling it will sometimes be possible to predict the creation of a new commu- 

nication link due the distance-2 relationship which will likely exist between the 

nodes prior to the creation of the new communications link. Research should 

address the relationship between the frequency of link formation/dissolution 

and network rescheduling. Also the impact of mobility on optimality concerns 

of scheduling should be investigated. 
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